On boundary properties of asymptotically holomorphic functions
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 127-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that for a generic almost complex structure on an almost complex manifold $(M,J)$ all holomorphic (even locally) functions are constants. For this reason the analysis on almost complex manifolds concerns the classes of functions which satisfy the Cauchy-Riemann equations only approximately. The choice of such a condition depends on a considered problem. For example, in the study of zero sets of functions the quasiconformal type conditions are very natural. This was confirmed by the famous work of S. Donaldson. In order to study the boundary properties of classes of functions (on a manifold with boundary) other type of conditions are suitable. In the present paper we prove a Fatou type theorem for bounded functions with $\overline\partial_J$ differential of a controled growth on smoothly bounded domains in an almost complex manifold. The obtained result is new even in the case of $\mathbb{C}^n$ with the standard complex structure. Furthermore, in the case of $\mathbb{C}^n$ we obtain results with optimal regularity assumptions. This generalizes several known results.
Keywords: almost complex manifold, $\overline\partial$-operator, admissible region, Fatou theorem.
@article{UFA_2022_14_3_a11,
     author = {A. Sukhov},
     title = {On boundary properties of asymptotically holomorphic functions},
     journal = {Ufa mathematical journal},
     pages = {127--140},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a11/}
}
TY  - JOUR
AU  - A. Sukhov
TI  - On boundary properties of asymptotically holomorphic functions
JO  - Ufa mathematical journal
PY  - 2022
SP  - 127
EP  - 140
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a11/
LA  - en
ID  - UFA_2022_14_3_a11
ER  - 
%0 Journal Article
%A A. Sukhov
%T On boundary properties of asymptotically holomorphic functions
%J Ufa mathematical journal
%D 2022
%P 127-140
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a11/
%G en
%F UFA_2022_14_3_a11
A. Sukhov. On boundary properties of asymptotically holomorphic functions. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 127-140. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a11/

[1] M. Audin, J. Lafontaine, Holomorphic curves in symplectic geometry, Birkhauser Verlag, Basel, 1994 | MR | Zbl

[2] E. Chirka, “The Lindelöf and Fatou theorems in $\mathbb{C}^n$”, Math. U.S.S.R Sb., 21:5 (1973), 619–641 | MR

[3] E. Chirka, B. Coupet, A. Sukhov, “On boundary regularity of analytic discs”, Michigan Math. J., 46:3 (1999), 271–279 | MR | Zbl

[4] R. Narasimhan, Several complex variables, Chicago lectures in mathematics, The University of Chicago Press, Chicago, 1971 | MR | Zbl

[5] F. Forstnerič, “Admissible boundary values of bounded holomorphic functions in wedges”, Trans. Amer. Math. Soc., 332:4 (1992), 583–593 | DOI | MR | Zbl

[6] N. Kerzman, J.P. Rosay, “Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut”, Math. Ann., 257:1 (1981), 171–184 | DOI | MR | Zbl

[7] G. Henkin, E. Chirka, “Boundary properties of holomorphic functions of several complex variables”, Akad. Nauk SSSR, Current problems in mathematics, 4 (1975), 12-142 | MR

[8] Y. Khurumov, “On the Lindelöf theorem in $\mathbb{C}^n$”, Dokl. Akad Nauk SSSR, 273:10 (1983), 1325–1328 | MR | Zbl

[9] A. Newlander, L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. Math., 65:3 (1957), 391–404 | DOI | MR | Zbl

[10] A. Nijenhuis, W. Woolf, “Some integration problems in almost-complex and complex manifolds”, Ann. Math., 77:4 (1963), 424–489 | DOI | MR | Zbl

[11] L. Nirenberg, S. Webster, P. Yang, “Local boundary regularity of holomorphic mappings”, Comm. Pure Appl. Math., 33:2 (1980), 305–338 | DOI | MR | Zbl

[12] S. Pinchuk, S. Khasanov, “Asymptotically holomorphic functions and their applications”, Mat. USSR Sb., 62:4 (1989), 541–550 | DOI | MR | Zbl

[13] Yu.G. Reshetnyak, “Certain geometric properties of functions and mappings with generalized derivatives”, Siber. Math. J., 7:4 (1966), 704–732 | DOI | MR | Zbl

[14] A. Sadullaev, “A boundary uniqueness theorem in $\mathbb{C}^n$”, Sb. Math., 30:4 (1976), 501–514 | DOI | MR

[15] E.M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, 1972 | MR | Zbl

[16] A. Sukhov, A. Tumanov, “Filling hypersurfaces by discs in almost complex manifolds of dimension 2”, Indiana Univ. Math. J., 57:3 (2008), 509–544 | DOI | MR | Zbl

[17] A. Sukhov., “The Chirka-Lindelöf and Fatou type theorems for $\overline\partial_J$-subsolutions”, Rev. Math. Iberoamericana, 36:10 (2020), 1469–1487 | DOI | MR | Zbl

[18] A. Sukhov., “On holomorphic mappings of strictly pseudoconvex domains”, Matem. Sb. (to appear) | MR

[19] I.N. Vekua, Generalized analytic functions, Pergamon Press, London, 1962 | MR | Zbl