Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 117-126

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a bounded set on the complex plane $\mathbb{C}$ with a connected complement $K^{-}:=\overline{\mathbb{C}}\backslash K$. Let $ \mathbb{D}:=\left\{ w\in \mathbb{C}:\left\vert w\right\vert 1\right\} $ and $\mathbb{D}^{-}:=\overline{\mathbb{C}}\backslash \overline{\mathbb{D}}$. By $\varphi $ we denote the conformal mapping of $K^{-}$onto $\left\{ w\in \mathbb{C} :\left\vert w\right\vert >1\right\} $ normalized by the conditions $\varphi \left( \infty \right) =\infty $ and $\lim_{z\rightarrow \infty}\varphi \left( z\right) /z>0$. Let $\Gamma _{R}:=\left\{ z\in K^{-}:\left\vert \varphi \left( z\right) \right\vert =R>1\right\} $ and $G_{R}:=\operatorname{Int}\Gamma _{R}$. Let also $\Phi _{k}\left( z\right) $, $k=0,1,2,\ldots$ be the Faber polynomials for $K$ constructed via conformal mapping $\varphi $. As it is well known, if $f $ is an analytic function in $G_{R}$, then the representation $ f\left( z\right) =\sum\limits_{k=0}^{\infty}a_{k}\left( f\right) \Phi _{k}\left( z\right) $, $z\in G_{R} $ holds. The partial sums of Faber series play an important role in constructing approximations in complex plane and investigating properties of Faber series is one of the essential issue. In this work the maximal convergence of the partial sums of the partial sums of the Faber series of $f$ in weighted rearrangement invariant Smirnov class $E_{X}\left(G_{R},\omega \right)$ of analytic functions in $G_{R}$ is studied. Here the weight $\omega$ satisfies the Muckenhoupt condition on $\Gamma _{R}$. The estimates are given in the uniform norm on $K$. The right sides of obtained inequalities involve the powers of the parameter $R$ and $E_{n}\left( f,G\right) _{X.\omega}$ called the best approximation number of $f$ in $E_{X}\left( G_{R},\omega \right) $, defined as $E_{n}\left( f,G\right) _{X.\omega}:=\inf \left\{ \left\Vert f-P_{n}\right\Vert _{X\left( \Gamma ,\omega \right)}:P_{n}\in \Pi _{n}\right\} $. Here $\Pi _{n}$ is the class of algebraic polynomials of degree not exceeding $n$. These results given in this paper is a kind of generalisation of similar results obtained in the classical Smirnov classes.
Keywords: Banach function space, Faber series, weighted rearrangement invariant space.
Mots-clés : Maximal convergence
@article{UFA_2022_14_3_a10,
     author = {A. Testici},
     title = {Maximal convergence of {Faber} series  in weighted rearrangement   invariant {Smirnov} classes},
     journal = {Ufa mathematical journal},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/}
}
TY  - JOUR
AU  - A. Testici
TI  - Maximal convergence of Faber series  in weighted rearrangement   invariant Smirnov classes
JO  - Ufa mathematical journal
PY  - 2022
SP  - 117
EP  - 126
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/
LA  - en
ID  - UFA_2022_14_3_a10
ER  - 
%0 Journal Article
%A A. Testici
%T Maximal convergence of Faber series  in weighted rearrangement   invariant Smirnov classes
%J Ufa mathematical journal
%D 2022
%P 117-126
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/
%G en
%F UFA_2022_14_3_a10
A. Testici. Maximal convergence of Faber series  in weighted rearrangement   invariant Smirnov classes. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/