Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 117-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K$ be a bounded set on the complex plane $\mathbb{C}$ with a connected complement $K^{-}:=\overline{\mathbb{C}}\backslash K$. Let $ \mathbb{D}:=\left\{ w\in \mathbb{C}:\left\vert w\right\vert 1\right\} $ and $\mathbb{D}^{-}:=\overline{\mathbb{C}}\backslash \overline{\mathbb{D}}$. By $\varphi $ we denote the conformal mapping of $K^{-}$onto $\left\{ w\in \mathbb{C} :\left\vert w\right\vert >1\right\} $ normalized by the conditions $\varphi \left( \infty \right) =\infty $ and $\lim_{z\rightarrow \infty}\varphi \left( z\right) /z>0$. Let $\Gamma _{R}:=\left\{ z\in K^{-}:\left\vert \varphi \left( z\right) \right\vert =R>1\right\} $ and $G_{R}:=\operatorname{Int}\Gamma _{R}$. Let also $\Phi _{k}\left( z\right) $, $k=0,1,2,\ldots$ be the Faber polynomials for $K$ constructed via conformal mapping $\varphi $. As it is well known, if $f $ is an analytic function in $G_{R}$, then the representation $ f\left( z\right) =\sum\limits_{k=0}^{\infty}a_{k}\left( f\right) \Phi _{k}\left( z\right) $, $z\in G_{R} $ holds. The partial sums of Faber series play an important role in constructing approximations in complex plane and investigating properties of Faber series is one of the essential issue. In this work the maximal convergence of the partial sums of the partial sums of the Faber series of $f$ in weighted rearrangement invariant Smirnov class $E_{X}\left(G_{R},\omega \right)$ of analytic functions in $G_{R}$ is studied. Here the weight $\omega$ satisfies the Muckenhoupt condition on $\Gamma _{R}$. The estimates are given in the uniform norm on $K$. The right sides of obtained inequalities involve the powers of the parameter $R$ and $E_{n}\left( f,G\right) _{X.\omega}$ called the best approximation number of $f$ in $E_{X}\left( G_{R},\omega \right) $, defined as $E_{n}\left( f,G\right) _{X.\omega}:=\inf \left\{ \left\Vert f-P_{n}\right\Vert _{X\left( \Gamma ,\omega \right)}:P_{n}\in \Pi _{n}\right\} $. Here $\Pi _{n}$ is the class of algebraic polynomials of degree not exceeding $n$. These results given in this paper is a kind of generalisation of similar results obtained in the classical Smirnov classes.
Keywords: Banach function space, Faber series, weighted rearrangement invariant space.
Mots-clés : Maximal convergence
@article{UFA_2022_14_3_a10,
     author = {A. Testici},
     title = {Maximal convergence of {Faber} series in weighted rearrangement invariant {Smirnov} classes},
     journal = {Ufa mathematical journal},
     pages = {117--126},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/}
}
TY  - JOUR
AU  - A. Testici
TI  - Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes
JO  - Ufa mathematical journal
PY  - 2022
SP  - 117
EP  - 126
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/
LA  - en
ID  - UFA_2022_14_3_a10
ER  - 
%0 Journal Article
%A A. Testici
%T Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes
%J Ufa mathematical journal
%D 2022
%P 117-126
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/
%G en
%F UFA_2022_14_3_a10
A. Testici. Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, Boston, 1988 | MR | Zbl

[2] L. Pick, A. Kufner, O. John, S. Fucík, Function spaces, v. I, De Gruyter, Berlin, 2013 | MR | Zbl

[3] A. Guven, D. M. Israfiov, “Approximation by trigonometric polynomials in weighted rearrangement invariant spaces”, Glas. Mat. Ser., 44:64 (2009), 423–446 | DOI | MR | Zbl

[4] D. M. Israfilov, R. Akgun, “Approximation by polynomials and rational functions in weighted rearrangement invariant spaces”, J. Math. Anal. Appl., 346:2 (2008), 489-500 | DOI | MR | Zbl

[5] R. Akgun, “Approximation by polynomials in rearrangement invariant quasi Banach function spaces”, Banach J. Math. Anal., 6:2 (2012), 113–131 | DOI | MR | Zbl

[6] S.Z. Jafarov, “Approximation by trigonometric polynomials in rearrangement invariant quasi Banach function spaces”, Mediterr. J. Math., 12:1 (2015), 37–50 | DOI | MR | Zbl

[7] A. Guven, D.M. Israfilov, “Approximation in rearrangement invariant spaces in Carleson curves”, East J. Approx., 12:4 (2006), 381–395 | MR | Zbl

[8] H. Yurt, A. Guven, “On rational approximation of functions in rearrangement invariant spaces”, J. Classic. Anal., 3:1 (2013), 69–83 | DOI | MR | Zbl

[9] S.Z. Jafarov, “Approximation in weighted rearrangement invariant Smirnov spaces”, Tbilisi Math. J., 9:1 (2016), 9–21 | DOI | MR | Zbl

[10] C.F. Gao, N. Noda, “Faber series method for two-dimensional problems of an arbitrarily shaped inclusion in piezoelectric materials”, Acta Mech., 171:1-2 (2004), 1–13 | DOI | MR | Zbl

[11] S.A. Kaloerov, E.S. Glushankov, “Determining the thermo-electro-magneto-elastic state of multiply connected piecewise-homogeneous piezoelectric plates”, J. Appl. Mech. Techn. Phys., 59:6 (2018), 1036–1048 | DOI | MR | Zbl

[12] P.K. Suetin, Series of Faber polynomials, Gordon and Breach, Amsterdam, 1998 | MR | Zbl

[13] D. Gaier, Lectures on complex approximation, Birkhauser, Basel, 1987 | MR | Zbl

[14] V. V. Andrievskii, H. P. Blatt, “On the distribution of zeros of Faber polynomials”, Comput. Meth. Funct. Theory, 11:1 (2011), 263–282 | DOI | MR | Zbl

[15] G.M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, RI, 1968 | MR

[16] D. M. Israfilov, B. Oktay, R. Akgun, “Approximation in Smirnov-Orlicz classes”, Glas. Mat. Ser., 40:60 (2005), 87-102 | DOI | MR | Zbl

[17] D. M. Israfilov, E. Gursel, E. Aydin, “Maximal convergence of Faber series in Smirnov classes with variable exponent”, E. Bull. Braz Math Soc, New Series, 4:4 (2018), 955–963 | DOI | MR | Zbl

[18] D. M. Israfilov, E. Gursel, “Maximal convergence of Faber series in Smirnov classes with variable exponent”, Turkish J. Math., 44:2 (2020), 389–402 | MR

[19] S.E. Warschawski, “Über das Randverhalten der Ableitung der Abbildungs funktion bei konformer Abbildung”, Math. Zeit., 35 (1932), 321–456 | DOI | MR | Zbl

[20] A. Böttcher, Y. I. Karlovich, Carleson curves, Muckenhoupt weights and Toeplitz operators, Birkäuser, Basel, 1997 | MR | Zbl

[21] A.Yu. Karlovich, “Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights”, J. Oper. Theory, 47:2 (2002), 303–323 | MR | Zbl