Mots-clés : Maximal convergence
@article{UFA_2022_14_3_a10,
author = {A. Testici},
title = {Maximal convergence of {Faber} series in weighted rearrangement invariant {Smirnov} classes},
journal = {Ufa mathematical journal},
pages = {117--126},
year = {2022},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/}
}
A. Testici. Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 117-126. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a10/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, Boston, 1988 | MR | Zbl
[2] L. Pick, A. Kufner, O. John, S. Fucík, Function spaces, v. I, De Gruyter, Berlin, 2013 | MR | Zbl
[3] A. Guven, D. M. Israfiov, “Approximation by trigonometric polynomials in weighted rearrangement invariant spaces”, Glas. Mat. Ser., 44:64 (2009), 423–446 | DOI | MR | Zbl
[4] D. M. Israfilov, R. Akgun, “Approximation by polynomials and rational functions in weighted rearrangement invariant spaces”, J. Math. Anal. Appl., 346:2 (2008), 489-500 | DOI | MR | Zbl
[5] R. Akgun, “Approximation by polynomials in rearrangement invariant quasi Banach function spaces”, Banach J. Math. Anal., 6:2 (2012), 113–131 | DOI | MR | Zbl
[6] S.Z. Jafarov, “Approximation by trigonometric polynomials in rearrangement invariant quasi Banach function spaces”, Mediterr. J. Math., 12:1 (2015), 37–50 | DOI | MR | Zbl
[7] A. Guven, D.M. Israfilov, “Approximation in rearrangement invariant spaces in Carleson curves”, East J. Approx., 12:4 (2006), 381–395 | MR | Zbl
[8] H. Yurt, A. Guven, “On rational approximation of functions in rearrangement invariant spaces”, J. Classic. Anal., 3:1 (2013), 69–83 | DOI | MR | Zbl
[9] S.Z. Jafarov, “Approximation in weighted rearrangement invariant Smirnov spaces”, Tbilisi Math. J., 9:1 (2016), 9–21 | DOI | MR | Zbl
[10] C.F. Gao, N. Noda, “Faber series method for two-dimensional problems of an arbitrarily shaped inclusion in piezoelectric materials”, Acta Mech., 171:1-2 (2004), 1–13 | DOI | MR | Zbl
[11] S.A. Kaloerov, E.S. Glushankov, “Determining the thermo-electro-magneto-elastic state of multiply connected piecewise-homogeneous piezoelectric plates”, J. Appl. Mech. Techn. Phys., 59:6 (2018), 1036–1048 | DOI | MR | Zbl
[12] P.K. Suetin, Series of Faber polynomials, Gordon and Breach, Amsterdam, 1998 | MR | Zbl
[13] D. Gaier, Lectures on complex approximation, Birkhauser, Basel, 1987 | MR | Zbl
[14] V. V. Andrievskii, H. P. Blatt, “On the distribution of zeros of Faber polynomials”, Comput. Meth. Funct. Theory, 11:1 (2011), 263–282 | DOI | MR | Zbl
[15] G.M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, RI, 1968 | MR
[16] D. M. Israfilov, B. Oktay, R. Akgun, “Approximation in Smirnov-Orlicz classes”, Glas. Mat. Ser., 40:60 (2005), 87-102 | DOI | MR | Zbl
[17] D. M. Israfilov, E. Gursel, E. Aydin, “Maximal convergence of Faber series in Smirnov classes with variable exponent”, E. Bull. Braz Math Soc, New Series, 4:4 (2018), 955–963 | DOI | MR | Zbl
[18] D. M. Israfilov, E. Gursel, “Maximal convergence of Faber series in Smirnov classes with variable exponent”, Turkish J. Math., 44:2 (2020), 389–402 | MR
[19] S.E. Warschawski, “Über das Randverhalten der Ableitung der Abbildungs funktion bei konformer Abbildung”, Math. Zeit., 35 (1932), 321–456 | DOI | MR | Zbl
[20] A. Böttcher, Y. I. Karlovich, Carleson curves, Muckenhoupt weights and Toeplitz operators, Birkäuser, Basel, 1997 | MR | Zbl
[21] A.Yu. Karlovich, “Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights”, J. Oper. Theory, 47:2 (2002), 303–323 | MR | Zbl