@article{UFA_2022_14_2_a7,
author = {Yu. Kh. Eshkabilov and D. J. Kulturaev},
title = {On discrete spectrum of one two-particle lattice {Hamiltonian}},
journal = {Ufa mathematical journal},
pages = {97--107},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a7/}
}
Yu. Kh. Eshkabilov; D. J. Kulturaev. On discrete spectrum of one two-particle lattice Hamiltonian. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 97-107. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a7/
[1] L.D. Faddeev, “On a model of Friedrichs in the theory of perturbations of the continuous spectrum”, Amer. Math. Soc. Transl. Ser. 2, 62 (1967), 177–203
[2] R. A. Minlos, Ya. G. Sinai, Spectra of stochastic operators arising in lattice models of a gas, 2:2 (1970), 167–176
[3] K.O. Friedrichs, Perturbation of spectra in Hilbert space, Amer. Math. Soc., Providence, R.I., 1965
[4] S.N. Lakaev, R.A. Minlos, “Bound states of a cluster operator”, Theor. Math. Phys, 39:1 (1979), 336–342
[5] S.N. Lakaev, On Efimov's effect in a system of three identical quantum particles, 27:3 (1993), 166–175
[6] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, San Diego, 1978
[7] K.O. Friedrichs., “Uber die Spectralzerlegung eines Integral operators”, Math. Ann., 115:2 (1938), 249–300
[8] K.O. Friedrichs, “On the perturbation of continuous spectra”, Comm. Pure appl. Math., 1:4 (1948), 361–406
[9] M.A. Lavrentiev, B.V. Shabat, Hydrodynamics problems and their mathematical models, Nauka, M., 1973
[10] Sh.S. Mamatov, R.A. Minlos, “Bound states of two-particle cluster operator”, Theor. Math. Phys., 79:2 (1989), 455–466
[11] Yu.Kh. Éshkabilov, “A discrete “three-particle” Schrödinger operator in the Hubbard model”, Theor. Math. Phys., 149:2 (2006), 1497–1511
[12] M.E. Muminov, A.M. Khurramov, “Spectral properties of two particle Hamiltonian on one-dimensional lattice”, Ufa Math. J., 6:4 (2014), 99–107
[13] Yu.Kh. Éshkabilov, “On one operator in Friedrichs model”, Uzbek. Matem. Zh., 3 (1999), 85–93 (in Russian)
[14] Yu.Kh. Éshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Siber. Adv. Math., 22:1 (2012), 1–12
[15] Yu.Kh. Éshkabilov, “On infinite number of negative eigenvalues of the Friedrichs model”, Nanosystems: Phys. Chem. Math., 3:6 (2012), 16–24 (in Russian)
[16] Yu.Kh. Éshkabilov, D.Zh. Kulturaev, “On infiniteness of discrete spectra of operators in multi-dimensional Friedrichs model”, ŬzMU Habarlari, 1 (2014), 83–89 (in Russian)
[17] S.A. Imomkulov, S.N. Lakaev, “Discrete spectrum of one-dimensional Friedrichs model”, Dokl. AN UzSSR, 7 (1988), 9–11 (in Russian)
[18] S.N. Lakaev, “On discrete spectrum of generalized Friedrichs model”, Dokl. AN UzSSR, 4 (1979), 9–10 (in Russian)
[19] S.N. Lakaev, “Some special properties of the generalized Friedrichs model”, J. Soviet Math., 45:6 (1989), 1540–1565
[20] Zh.I. Abdullaev, “Eigenvalues of two-particles Schrödinger operator on two-dimensional lattice”, Uzbek. Matem. Zh., 1 (2005), 3–11
[21] K. Pankrashkin, Introduction to the spectral theory, Lecture notes of the course given at the University Paris-Sud, Orsay, France, 2014
[22] Y.V. Zhukov, “The Iorio-O'Carroll theorem for an $N$-particle lattice Hamiltonian”, Theor. Math. Phys., 107:1 (1996), 478–486
[23] F.G. Tricomi, Integral equations, Interscience Publ., New York, 1957