Mots-clés : consistent invariants
@article{UFA_2022_14_2_a5,
author = {S. V. Khabirov and T. F. Mukminov},
title = {Simple waves of conic motions},
journal = {Ufa mathematical journal},
pages = {78--89},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/}
}
S. V. Khabirov; T. F. Mukminov. Simple waves of conic motions. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/
[1] S.V. Khabirov, Yu.A. Chirkunov, Emelents of symmetry analysis of differential equations of continuous media mechanics, Novosibirsk State Tech. Univ., Novosibirsk, 2012 (in Russian)
[2] S.V. Khabirov, Analitic methods in gas dynamics, Bashkir State Univ., Ufa, 2013 (in Russian)
[3] S.V. Khabirov, T.F. Mukminov, Sibir. Elektr. Matem. Izv., 16 (2019), 121–143 (in Russian)
[4] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Siber. Math. J., 54:6 (2013), 1110–1119
[5] L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982
[6] L.V. Ovsyannikov, “Some results of the implementation of the “podmodeli” program for the gas dynamics equations”, J. Appl. Math. Mech., 63:3 (1999), 349–358
[7] L.V. Ovsyannikov, “The “PODMODELI” program. Gas dynamics”, J. Appl. Math. Mech., 58:4 (1994), 601–627
[8] E.V. Mamontov, “Invariant submodels of rank two of the equations of gas dynamics”, J. Appl. Mech. Techn. Phys., 40:2 (1999), 232–237
[9] L.V. Ovsyannikov, “Type”, J. Appl. Mech. Tech. Phys., 37:2 (2,1) regular submodels of the equations of gas dynamics), 149–158
[10] S.V. Khabirov, “A submodel of helical motions in gas dynamics”, J. Appl. Math. Mech., 60:1 (1996), 47–59
[11] S.V. Meleshko, “Group classification of equations of motion of a gas in a constant force field”, J. Appl. Mech. Tech. Phys., 37:1 (1996), 36–40
[12] S.V. Meleshko, “Group classification of the equations of two-dimensional motions of a gas”, J. Appl. Math. Mech., 58:4 (1994), 629–635
[13] L.V. Ovsyannikov, ““Simple” solutions to the dynamics equations for a polytropic gas”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 191–197
[14] S.V. Golovin, “An invariant solution of gas dynamics equations”, J. Appl. Mech. Tech. Phys., 38:1 (1997), 1–7
[15] S.V. Khabirov, “Invariant motions of particles for general three-dimensional subgroup of all spatial translation group”, Chelyab. Fiz.-Mat. Zh., 5:4(1) (2020), 400–414 (in Russian)
[16] L.V. Ovsyannikov, “Regular and nonregular partially invariant solutions”, Dokl. Math., 52:1 (1995), 23–26
[17] L.V.Ovsyannikov, “Double sonic waves”, Siber. Math. J., 36:3 (1995), 526–532
[18] S.V. Khabirov, “Simple waves of a seven-dimensional subalgebra of all translations in gas dynamics”, J. Appl. Mech. Tech., 55:2 (2014), 362–366
[19] S.V. Khabirov, “Simple partially invariant solutions”, Ufa Math. J., 11:1 (2019), 90–99
[20] L.V. Ovsyannikov, Lectures on foundation of gas dynamics, Inst. Komp. Issl., M., 2003 (in Russian)