Simple waves of conic motions
Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 78-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous media models of a gas dynamical type admit $11$-dimensional Lie algebra of Galileo group extended by an uniform dilatation of all independent variables. The object of the study is the constructing of submodels of the chain of embedded subalgebras with dimensions from $1$ till $4$ describing conical motions of the gas. For the chosen chain we find consistent invariant in the cylindrical coordinate system. On their base we obtain the representations for an invariant solution for each submodel in the chain. By substituting them into the system of gas dynamics equations we obtain embedded invariant submodels of ranks from $0$ to $3$. We prove that the solutions of submodels constructed by a subalgebra of a higher dimension are solutions to submodels constructed by subalgebras of smaller dimensions.In the chosen chain, we consider a $4$-dimensional subalgebra generating irregular partially invariant solutions of rank $1$ defect $1$ in the cylindrical coordinates. In the gas dynamics, such solutions are called simple waves. We study the compatibility of the corresponding submodel by means of the system of alternative assumptions obtained from the submodel equations. We obtain solutions depending on arbitrary functions as well as partial solutions which can be invariant with respect to the subalgebras embedded into the considered subalgebra but are not necessarily from the considered chain.
Keywords: gas dynamics, chain of embedded subalgebra, invariant submodels, partially invariant solutions.
Mots-clés : consistent invariants
@article{UFA_2022_14_2_a5,
     author = {S. V. Khabirov and T. F. Mukminov},
     title = {Simple waves of conic motions},
     journal = {Ufa mathematical journal},
     pages = {78--89},
     year = {2022},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/}
}
TY  - JOUR
AU  - S. V. Khabirov
AU  - T. F. Mukminov
TI  - Simple waves of conic motions
JO  - Ufa mathematical journal
PY  - 2022
SP  - 78
EP  - 89
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/
LA  - en
ID  - UFA_2022_14_2_a5
ER  - 
%0 Journal Article
%A S. V. Khabirov
%A T. F. Mukminov
%T Simple waves of conic motions
%J Ufa mathematical journal
%D 2022
%P 78-89
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/
%G en
%F UFA_2022_14_2_a5
S. V. Khabirov; T. F. Mukminov. Simple waves of conic motions. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a5/

[1] S.V. Khabirov, Yu.A. Chirkunov, Emelents of symmetry analysis of differential equations of continuous media mechanics, Novosibirsk State Tech. Univ., Novosibirsk, 2012 (in Russian)

[2] S.V. Khabirov, Analitic methods in gas dynamics, Bashkir State Univ., Ufa, 2013 (in Russian)

[3] S.V. Khabirov, T.F. Mukminov, Sibir. Elektr. Matem. Izv., 16 (2019), 121–143 (in Russian)

[4] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Siber. Math. J., 54:6 (2013), 1110–1119

[5] L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982

[6] L.V. Ovsyannikov, “Some results of the implementation of the “podmodeli” program for the gas dynamics equations”, J. Appl. Math. Mech., 63:3 (1999), 349–358

[7] L.V. Ovsyannikov, “The “PODMODELI” program. Gas dynamics”, J. Appl. Math. Mech., 58:4 (1994), 601–627

[8] E.V. Mamontov, “Invariant submodels of rank two of the equations of gas dynamics”, J. Appl. Mech. Techn. Phys., 40:2 (1999), 232–237

[9] L.V. Ovsyannikov, “Type”, J. Appl. Mech. Tech. Phys., 37:2 (2,1) regular submodels of the equations of gas dynamics), 149–158

[10] S.V. Khabirov, “A submodel of helical motions in gas dynamics”, J. Appl. Math. Mech., 60:1 (1996), 47–59

[11] S.V. Meleshko, “Group classification of equations of motion of a gas in a constant force field”, J. Appl. Mech. Tech. Phys., 37:1 (1996), 36–40

[12] S.V. Meleshko, “Group classification of the equations of two-dimensional motions of a gas”, J. Appl. Math. Mech., 58:4 (1994), 629–635

[13] L.V. Ovsyannikov, ““Simple” solutions to the dynamics equations for a polytropic gas”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 191–197

[14] S.V. Golovin, “An invariant solution of gas dynamics equations”, J. Appl. Mech. Tech. Phys., 38:1 (1997), 1–7

[15] S.V. Khabirov, “Invariant motions of particles for general three-dimensional subgroup of all spatial translation group”, Chelyab. Fiz.-Mat. Zh., 5:4(1) (2020), 400–414 (in Russian)

[16] L.V. Ovsyannikov, “Regular and nonregular partially invariant solutions”, Dokl. Math., 52:1 (1995), 23–26

[17] L.V.Ovsyannikov, “Double sonic waves”, Siber. Math. J., 36:3 (1995), 526–532

[18] S.V. Khabirov, “Simple waves of a seven-dimensional subalgebra of all translations in gas dynamics”, J. Appl. Mech. Tech., 55:2 (2014), 362–366

[19] S.V. Khabirov, “Simple partially invariant solutions”, Ufa Math. J., 11:1 (2019), 90–99

[20] L.V. Ovsyannikov, Lectures on foundation of gas dynamics, Inst. Komp. Issl., M., 2003 (in Russian)