@article{UFA_2022_14_2_a4,
author = {E. V. Lipacheva},
title = {Trivial extensions of semigroups and semigroup $C^*$-algebras},
journal = {Ufa mathematical journal},
pages = {67--77},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a4/}
}
E. V. Lipacheva. Trivial extensions of semigroups and semigroup $C^*$-algebras. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 67-77. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a4/
[1] L.A. Coburn, “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73:5 (1967), 722–726
[2] L.A. Coburn, “The $C^*$-algebra generated by an isometry II”, Trans. Amer. Math. Soc., 137 (1969), 211–217
[3] R.G. Douglas, “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128:3 (1972), 143–151
[4] G.J. Murphy, “Ordered groups and Toeplitz algebras”, J. Oper. Theory, 18:2 (1987), 303–326
[5] G.J. Murphy, “Toeplitz operators and algebras”, Math. Z., 208:3 (1991), 355–362
[6] A. Nica., “$C^*$-algebras generated by isometries and Wiener –Hopf operators”, J. Operator Theory, 27:1 (1992), 17–52
[7] M. Laca, I. Raeburn, “Semigroup crossed products and the Toeplitz algebras of nonabelian groups”, J. Funct. Anal., 139:2 (1996), 415–440
[8] X. Li, “Semigroup $C^*$-algebras and amenability of semigroups”, J. Functional Analysis, 262:10 (2012), 4302–4340
[9] S.A. Grigoryan, T.A. Grigoryan, E.V. Lipacheva, A. S. Sitdikov, “$C^*$-Algebra generated by the path semigroup”, Lobachevskii J. of Math., 37:6 (2016), 740–748
[10] S.A. Grigoryan, E.V. Lipacheva, A.S. Sitdikov, “Nets of graded $C^*$-algebras over partially ordered sets”, St. Petersburg Math. J., 30:6 (2019), 901–915
[11] R.N. Gumerov, E.V. Lipacheva, “Topological Grading of Semigroup C*-Algebras”, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 90:3 (2020), 44–55
[12] E.V. Lipacheva, “On graded semigroup $C^*$-algebras and Hilbert modules”, Proc. Steklov Inst. Math., 313 (2021), 120–130
[13] E.V. Lipacheva, “A Semigroup $C^*$-algebra which is a Free Banach Module”, Lobachevskii J. of Math., 42:10 (2021), 2386–2391
[14] B.V. Novikov, “Semigroup cohomologies: a survey”, Fund. Prikl. Matem., 7:1 (2001), 1–18 (in Russian)
[15] A.H. Clifford, “Extensions of semigroups”, Trans. Amer. Math. Soc., 68:2 (1950), 165–173
[16] L. Rédei, “Die Verallgemeinerung der Schreierschen”, Erweiterungstheorie Acta Sci. Math. Szeged, 14 (1952), 252–273
[17] L.M. Gluskin, I.L. Perepelitsyn, “Normal extensions of semi-groups”, Izv. VUZov. Matem., 1972, no. 12, 46–54 (in Russian)
[18] L.M. Gluskin, “Normal extensions of commutative semigroups”, Russian Math., 29:9 (Iz. VUZ)), 16–27
[19] I.S. Berdnikov, R.N. Gumerov, E.V. Lipacheva, “On the Stone-Cech Compactification Functor and the Normal Extensions of Monoids”, Lobachevskii J. of Math., 42:10 (2021), 2295–2305
[20] S.A. Grigoryan, R.N. Gumerov, E.V. Lipacheva, “On Extensions of Semigroups and Their Applications to Toeplitz Algebras”, Lobachevskii J. of Math., 40:12 (2019), 2052–2061
[21] R.N. Gumerov, “Normal extensions of semigroups and embeddings of semigroup $C^*$-algebras”, Trudy MFTI, 12:1 (2020), 74–82 (in Russian)
[22] E.V. Lipacheva, “Extensions of semigroups and morphisms of semigroup $C^*$-algebras”, Siberian Math. J., 62:1 (2021), 66–76
[23] R. Exel, Partial dynamical systems, Fell bundles and applications, Math. Surv. Monogr., 224, Amer. Math. Soc., Providence, RI, 2017
[24] E.S. Lyapin, Semigroups, Amer. Math. Soc., Providence, R.I., 1974
[25] A.Ya Helemskii, Banach and locally convex algebras, Clarendon Press, Oxford, 1993