Mots-clés : $\eta$-invariant
@article{UFA_2022_14_2_a2,
author = {K. N. Zhuikov and A. Yu. Savin},
title = {Eta-invariant for parameter-dependent families with periodic coefficients},
journal = {Ufa mathematical journal},
pages = {35--55},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a2/}
}
K. N. Zhuikov; A. Yu. Savin. Eta-invariant for parameter-dependent families with periodic coefficients. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 35-55. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a2/
[1] M.S. Agranovich, M.I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russ. Math. Surv., 19:3 (1964), 53–157
[2] A.Yu. Savin, B.Yu. Sternin, “Elliptic ${G}$-operators on manifolds with isolated singularities”, J. Math. Sci., 233:6 (2018), 930–948
[3] M.A. Shubin, Pseudodifferential operators and spectral theory, Springer, Berlin, 2001
[4] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69
[5] J.-M. Bismut, J. Cheeger, “$\eta$-invariants and their adiabatic limits”, J. of Amer. Math. Soc., 2:1 (1989), 33–70
[6] J. Cheeger, “$\eta$-invariants, the adiabatic approximation and conical singularities”, J. Diff. Geometry, 26:1 (1987), 175–221
[7] Yu. Egorov, B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Birkhäuser, Boston–Basel–Berlin, 1997
[8] B.V. Fedosov, B.-W. Schulze, N. Tarkhanov, “The index of higher order operators on singular surfaces”, Pacific J. of Math., 191:1 (1999), 25–48
[9] M. Lesch, H. Moscovici, M.J. Pflaum, Connes-Chern character for manifolds with boundary and eta cochains, Mem. Amer. Math. Soc., 220, no. 1036, 2012, viii+92 pp.
[10] M. Lesch, M. Pflaum, “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Amer. Math. Soc., 352:11 (2000), 4911–4936
[11] R. Melrose, “The eta invariant and families of pseudodifferential operators”, Math. Research Letters, 2:5 (1995), 541–561
[12] R. Melrose, F. Rochon, “Eta forms and the odd pseudodifferential families index”, Surveys in differential geometry, v. XV, Surv. Differ. Geom., 15, Perspectives in mathematics and physics, Int. Press, Somerville, MA, 2011, 279–322
[13] W. Müller, “Eta-invariant (some recent developments)”, Sem. Bourbaki, Asterisque, 227, 1994, 335–364
[14] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic Theory on Singular Manifolds, CRC-Press, Boca Raton, 2005
[15] V. Nistor., “An index theorem for gauge-invariant families: The case of solvable groups”, Acta Math. Hungarica, 99:2 (2003), 155–183
[16] A.L. Skubachevskii, Elliptic functional differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997
[17] A.L. Skubachevskii, “Nonlocal elliptic problems in infinite cylinder and applications”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 847–868
[18] E. Witten, “Quantum field theory and the Jones polynomial”, Braid group, knot theory and statistical mechanics, Adv. Ser. Math. Phys., 9, World Sci. Publ., Teaneck, NJ, 1989, 239–329