On divisible quantum dynamical mappings
Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 22-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study quantum dynamical mappings called also quantum processes. The set of values of such mapping is a one-parameter family of completely positive trace-preserving linear operators defined on a finite-dimensional Hilbert space. In quantum information theory such operators are referred to as quantum channels. An important concept for quantum dynamical mappings is their divisibility. There are different types of this concept. The present paper deals with so-called completely positive divisible quantum processes. For two such processes, which are bijective and satisfy a commutativity condition, we construct a compound quantum process. It is shown that this compound quantum process is also completely positive divisible. Endowing a set of quantum channels with the norm topology, we consider continuous quantum processes and continuous completely positive evolutions. The latter are defined as two-parameter families of quantum channels satisfying additional properties. We prove that a continuous bijective completely positive divisible quantum process generates a continuous completely positive evolution. In order to illustrate the considered concepts and the results on them, we provide examples of quantum dynamical mappings with values in the set of qubit channels. In particular, a completely positive divisible compound quantum process is constructed for two bijective commuting quantum processes. Geometric and physical interpretations of this compound quantum process are given.
Keywords: Banach algebra, bijective process, completely positive divisible process, compound process, continuous completely positive evolution, positive divisible process, operator norm, quantum channel, quantum dynamical mapping, quantum process, topological group
Mots-clés : trace norm.
@article{UFA_2022_14_2_a1,
     author = {R. N. Gumerov and R. L. Khazhin},
     title = {On divisible quantum dynamical mappings},
     journal = {Ufa mathematical journal},
     pages = {22--34},
     year = {2022},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/}
}
TY  - JOUR
AU  - R. N. Gumerov
AU  - R. L. Khazhin
TI  - On divisible quantum dynamical mappings
JO  - Ufa mathematical journal
PY  - 2022
SP  - 22
EP  - 34
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/
LA  - en
ID  - UFA_2022_14_2_a1
ER  - 
%0 Journal Article
%A R. N. Gumerov
%A R. L. Khazhin
%T On divisible quantum dynamical mappings
%J Ufa mathematical journal
%D 2022
%P 22-34
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/
%G en
%F UFA_2022_14_2_a1
R. N. Gumerov; R. L. Khazhin. On divisible quantum dynamical mappings. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 22-34. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/

[1] A.S. Holevo, “Infinite-divisible instruments in quantum probability theory”, Theory Probab. Appl., 31:3 (1987), 493–497

[2] L.V. Denisov, “Infinitely divisible Markov mappings in quantum probability theory”, Theory Probab. Appl., 33:2 (1988), 392–395

[3] M.M. Wolf, J.I. Cirac, “Dividing quantum channels”, Commun. Math. Phys., 279:1 (2008), 147–168

[4] S.N. Filippov, “Tensor products of quantum mappings”, J. Math. Sci., 252:1 (2021), 116–124

[5] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini., “Colloquium: Non-Markovian dynamics in open quantum system”, Rev. Mod. Phys., 88 (2016), 021002

[6] B. Bylicka, M. Johansson, A. Acín, “Constructive method for detecting the information backflow of bijective non-completely-positive-divisible dynamics”, Phys. Rev. Lett., 118 (2017), 120501

[7] D. Davalos, M. Ziman, C. Pineda, “Divisibility of qubit channels and dynamical maps”, Quantum, 3 (2019), 144

[8] D. Chruściński, A. Kossakowski, S. Pascazio, “Long-time memory in non-Markovian evolutions”, Phys. Rev. A, 81 (2010), 032101

[9] S.N. Filippov, J. Piilo, S. Maniscalco, M. Ziman, “Divisibility of quantum dynamical maps and collision models”, Phys. Rev. A, 96 (2017), 032111

[10] S. Milz, M.S. Kim, F.A. Pollock, K. Modi., “Completely positive divisibility does not mean Markovianity”, Phys. Rev. Lett., 123 (2019), 040401

[11] D. Chruściński, “Introduction to Non-Markovian Evolution of $n$-Level Quantum Systems”, Open quantum systems: A mathematical perspective, eds. Bahns D., Pohl A., Witt I., Birkhauser, Cham, 2019, 55–76

[12] A.S. Holevo, Quantum systems, channels, information, De Gruyter, Berlin, 2019

[13] J. Watrous., The theory of quantum information, Cambridge University Press, Cambridge, 2018

[14] A.Ya. Helemskii, Lectures and exercises on functional analysis, Amer. Math. Soc., Providence, RI, 2006

[15] V. Paulsen., Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2003

[16] A.Ya. Helemskii, Banach and locally convex algebras, Oxford University Press Inc., Clarendon Press, New York, 1993

[17] L.S. Pontryagin, Topological groups, Princeton University Press, Princeton; University Press, 1939

[18] R.N. Gumerov, Elements of general topology, KSU Publ., Kazan, 2007 (in Russian)

[19] M.B. Ruskai, S. Szarek, E. Werner, “An analysis of completely positive trace-preserving maps on $\mathscr{M}_2$”, Linear Algebra Appl., 347:1–3 (2002), 159–187

[20] C. King, M.B. Ruskai, “Minimal entropy of states emerging from noisy quantum channels”, IEEE Trans. Inform. Theory, 47:1 (2001), 192–209

[21] G.G. Amosov, “Remark on the additivity conjecture for a quantum depolarizing channel”, Probl. Inform. Transm., 42:2 (2006), 69–76

[22] G.G. Amosov, “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104

[23] G.G. Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19 (2020), 401