Mots-clés : trace norm.
@article{UFA_2022_14_2_a1,
author = {R. N. Gumerov and R. L. Khazhin},
title = {On divisible quantum dynamical mappings},
journal = {Ufa mathematical journal},
pages = {22--34},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/}
}
R. N. Gumerov; R. L. Khazhin. On divisible quantum dynamical mappings. Ufa mathematical journal, Tome 14 (2022) no. 2, pp. 22-34. http://geodesic.mathdoc.fr/item/UFA_2022_14_2_a1/
[1] A.S. Holevo, “Infinite-divisible instruments in quantum probability theory”, Theory Probab. Appl., 31:3 (1987), 493–497
[2] L.V. Denisov, “Infinitely divisible Markov mappings in quantum probability theory”, Theory Probab. Appl., 33:2 (1988), 392–395
[3] M.M. Wolf, J.I. Cirac, “Dividing quantum channels”, Commun. Math. Phys., 279:1 (2008), 147–168
[4] S.N. Filippov, “Tensor products of quantum mappings”, J. Math. Sci., 252:1 (2021), 116–124
[5] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini., “Colloquium: Non-Markovian dynamics in open quantum system”, Rev. Mod. Phys., 88 (2016), 021002
[6] B. Bylicka, M. Johansson, A. Acín, “Constructive method for detecting the information backflow of bijective non-completely-positive-divisible dynamics”, Phys. Rev. Lett., 118 (2017), 120501
[7] D. Davalos, M. Ziman, C. Pineda, “Divisibility of qubit channels and dynamical maps”, Quantum, 3 (2019), 144
[8] D. Chruściński, A. Kossakowski, S. Pascazio, “Long-time memory in non-Markovian evolutions”, Phys. Rev. A, 81 (2010), 032101
[9] S.N. Filippov, J. Piilo, S. Maniscalco, M. Ziman, “Divisibility of quantum dynamical maps and collision models”, Phys. Rev. A, 96 (2017), 032111
[10] S. Milz, M.S. Kim, F.A. Pollock, K. Modi., “Completely positive divisibility does not mean Markovianity”, Phys. Rev. Lett., 123 (2019), 040401
[11] D. Chruściński, “Introduction to Non-Markovian Evolution of $n$-Level Quantum Systems”, Open quantum systems: A mathematical perspective, eds. Bahns D., Pohl A., Witt I., Birkhauser, Cham, 2019, 55–76
[12] A.S. Holevo, Quantum systems, channels, information, De Gruyter, Berlin, 2019
[13] J. Watrous., The theory of quantum information, Cambridge University Press, Cambridge, 2018
[14] A.Ya. Helemskii, Lectures and exercises on functional analysis, Amer. Math. Soc., Providence, RI, 2006
[15] V. Paulsen., Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2003
[16] A.Ya. Helemskii, Banach and locally convex algebras, Oxford University Press Inc., Clarendon Press, New York, 1993
[17] L.S. Pontryagin, Topological groups, Princeton University Press, Princeton; University Press, 1939
[18] R.N. Gumerov, Elements of general topology, KSU Publ., Kazan, 2007 (in Russian)
[19] M.B. Ruskai, S. Szarek, E. Werner, “An analysis of completely positive trace-preserving maps on $\mathscr{M}_2$”, Linear Algebra Appl., 347:1–3 (2002), 159–187
[20] C. King, M.B. Ruskai, “Minimal entropy of states emerging from noisy quantum channels”, IEEE Trans. Inform. Theory, 47:1 (2001), 192–209
[21] G.G. Amosov, “Remark on the additivity conjecture for a quantum depolarizing channel”, Probl. Inform. Transm., 42:2 (2006), 69–76
[22] G.G. Amosov, “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104
[23] G.G. Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19 (2020), 401