Mots-clés : perturbation.
@article{UFA_2022_14_1_a5,
author = {B. N. Biyarov and Z. A. Zakariyeva and G. K. Abdrasheva},
title = {Non self-adjoint well-defined restrictions and extensions with real spectrum},
journal = {Ufa mathematical journal},
pages = {87--94},
year = {2022},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a5/}
}
TY - JOUR AU - B. N. Biyarov AU - Z. A. Zakariyeva AU - G. K. Abdrasheva TI - Non self-adjoint well-defined restrictions and extensions with real spectrum JO - Ufa mathematical journal PY - 2022 SP - 87 EP - 94 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a5/ LA - en ID - UFA_2022_14_1_a5 ER -
B. N. Biyarov; Z. A. Zakariyeva; G. K. Abdrasheva. Non self-adjoint well-defined restrictions and extensions with real spectrum. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a5/
[1] B.K. Kokebaev, M. Otelbaev, A.N. Shynibekov, “About expansions and restrictions of operators in Banach space”, Uspekhi Matem. Nauk, 37:4 (1982), 116–123 (in Russian) | MR
[2] Am. Math. Soc., Transl. II, 24 (1963), 107–172 | DOI | MR | Zbl | Zbl
[3] H.L. Hamburger, “Five notes on a generalization of quasi-nilpotent transformations in Hilbert space”, Proc. London Math. Soc., 3:1 (1951), 494–512 | DOI | MR | Zbl
[4] Diff. Equat., 30:12 (1994), 1863–1868 | MR | Zbl
[5] D.Y. Wu, A. Chen, “Spectral inclusion properties of the numerical range in a space with an indefinite metric”, Linear Alg. Appl., 435:5 (2011), 1131–1136 | DOI | MR | Zbl
[6] H. Radjavi and J.P. Williams, “Products of self-adjoint operators”, Michigan Math. J., 16:2 (1969), 177–185 | DOI | MR | Zbl
[7] J.P. Williams, “Spectra of products and numerical ranges”, J. Math. Anal. Appl., 17:2 (1967), 214–220 | DOI | MR | Zbl
[8] M. Radjabalipour and H. Radjavi, “On the geometry of numerical ranges”, Pacific J. Math., 61:2 (1975), 507–511 | DOI | MR | Zbl
[9] B.N. Biyarov, D.A. Svistunov, G.K. Abdrasheva, “Correct singular perturbations of the Laplace operator”, Eurasian Math. J., 11:4 (2020), 25–34 | DOI | MR | Zbl
[10] J.L. Lions, E. Magenes, Non-Homogeneous boundary value problems and applications, v. I, Springer-Verlag, Berlin, 1972 | MR