On degeneracy of orbits of nilpotent Lie algebras
Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 52-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we discuss $7$-dimensional orbits in $\mathbb{C}^4$ of two families of nilpotent $7$-dimensional Lie algebras; this is motivated by the problem on describing holomorphically homogeneous real hypersurfaces. Similar to nilpotent $5$-dimensional algebras of holomorphic vector fields in $ \mathbb{C}^3 $, the most part of algebras considered in the paper has no Levi non-degenerate orbits. In particular, we prove the absence of such orbits for a family of decomposable $7$-dimensional nilpotent Lie algebra ($31$ algebra). At the same time, in the family of $12$ non-decomposable $7$-dimensional nilpotent Lie algebras, each containing at least three Abelian $4$-dimensional ideals, four algebras has non-degenerate orbits. The hypersurfaces of two of these algebras are equivalent to quadrics, while non-spherical non-degenerate orbits of other two algebras are holomorphically non-equivalent generalization for the case of $4$-dimensional complex space of a known Winkelmann surface in the space $\mathbb{C}^3$. All orbits of the algebras in the second family admit tubular realizations.
Keywords: homogeneous manifold, holomorphic function, vector field, Lie algebra, Abelian ideal.
@article{UFA_2022_14_1_a3,
     author = {A. V. Loboda and V. K. Kaverina},
     title = {On degeneracy of orbits of nilpotent {Lie} algebras},
     journal = {Ufa mathematical journal},
     pages = {52--76},
     year = {2022},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a3/}
}
TY  - JOUR
AU  - A. V. Loboda
AU  - V. K. Kaverina
TI  - On degeneracy of orbits of nilpotent Lie algebras
JO  - Ufa mathematical journal
PY  - 2022
SP  - 52
EP  - 76
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a3/
LA  - en
ID  - UFA_2022_14_1_a3
ER  - 
%0 Journal Article
%A A. V. Loboda
%A V. K. Kaverina
%T On degeneracy of orbits of nilpotent Lie algebras
%J Ufa mathematical journal
%D 2022
%P 52-76
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a3/
%G en
%F UFA_2022_14_1_a3
A. V. Loboda; V. K. Kaverina. On degeneracy of orbits of nilpotent Lie algebras. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 52-76. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a3/

[1] E. Cartan., “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11 (1933), 17–90 | DOI | MR

[2] A.V. Loboda, “Holomorphically homogeneous real hypersurfaces in $\mathbb{C}^3$”, Trans. Moscow Math. Soc., 81:2 (2020), 169–228 | MR | Zbl

[3] R.S. Akopyan, A.V. Loboda, “On holomorphic realizations of nilpotent Lie algebras”, Funct. Anal. Appl., 53:2 (2019), 124–128 | DOI | MR | Zbl

[4] A.V. Loboda, R.S. Akopyan, V.V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR | Zbl

[5] A.V. Loboda, “On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces”, Proc. Steklov Inst. Math., 311 (2020), 180–198 | DOI | MR | Zbl

[6] R.S. Akopyan, V.V. Krutskikh, “Ob orbitakh 7-mernykh algebr Li, soderzhaschikh 5-mernye abelevy idealy”, Materialy mezhdunar. konferentsii «Sovremennye metody teorii funktsii i smezhnye problemy», VZMSh-2021 (Voronezh), 2021, 32–33

[7] A.V. Atanov, A.V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $ \Bbb C^3 $”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, 2019, 86–115 | MR

[8] B. Kruglikov, “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097 | MR | Zbl

[9] J. Winkelmann, The classification of 3-dimensional homogeneous complex manifolds, Lect. Notes Math., 1062, Springer, Berlin etc., 1995 | DOI | MR

[10] V.K. Beloshapka, I.G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | MR | Zbl

[11] A.V. Loboda, “O vyrozhdennosti orbit razlozhimykh algebr Li”, Sbornik tezisov mezhdunar. nauchn. konf. «UOMSh-2020» (Ufa), v. 1, 2020, 122–124

[12] A.V. Loboda, V.K. Kaverina, “Ob orbitakh 7-mernykh algebr Li, soderzhaschikh tri abelevykh 4-mernykh ideala”, Sbornik tezisov mezhdunar. nauchn. konf. «UOMSh-2020» (Ufa), v. 1, 2020, 125–127

[13] C. Seeley, “7-dimensional nilpotent Lie algebras”, Trans. Amer. Math. Soc., 335:2 (1993), 479–496 | MR | Zbl

[14] M.P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $ \Bbb R $), PhD thesis, Univ. Waterloo, Waterloo, 1998 www.semanticscholar.org/paper/f72dbfc64f72f7b3d9a740c77181ae2186d58e22

[15] G.M. Mubarakzyanov, “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matem., 1963, no. 3, 99–106 | MR | Zbl

[16] V.V. Krutskikh, A.V. Loboda, “Kompyuternaya obrabotka dannykh v odnoi mnogomernoi matematicheskoi zadache”, Materialy nauchn. konf. IPMT-2021 https://www.cs.vsu.ru/ipmt-conf/open/works?year=2021 | Zbl

[17] A.V. Isaev, M.A. Mishchenko, “Classification of spherical tube hypersurfaces having one minus in the signature of the Levi form”, Izv. Math., 33:3 (1989), 441–472 | MR | Zbl