Local boundary value problems for a loaded equation of
Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 37-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the beginning of 21st century, boundary value problems for non-degenerating equations of hyperbolic, parabolic, hyperbolic-parabolic and elliptic-hyperbolic types were studied. Recently this direction is intensively developed since rather important problems in mathematical physics and biology lead to boundary value problems for non-degenerate loaded partial differential equations. Boundary value problems for second order degenerating equation of a mixed type were not studied before. This is first of all because of the fact that there is no representation for the general solution to this equations. On the other hand, such problems are reduced to poorly studied integral equations with a shift. The present work is devoted to formulating and studying local boundary value problems for loaded equation of parabolic-hyperbolic type degenerating inside the domain. In the present work we find a new approach for obtaining a representation for the general solution to a degenerating loaded equation of a mixed type. The uniqueness of the formulated problem is proved by the methods of energy integrals. The existence of solutions to the formulated problems is equivalently reduced to a second order integral Fredholm and Volterra equations with a shift. We prove the unique solvability of the obtained integral equations.
Keywords: loaded equation of parabolic-hyperbolic type, loaded equation with a degeneration, representation of general solution, method of energy integrals, extremum principle, integral equation with a shift.
@article{UFA_2022_14_1_a2,
     author = {B. I. Islomov and F. M. Juraev},
     title = {Local boundary value problems for a loaded equation of},
     journal = {Ufa mathematical journal},
     pages = {37--51},
     year = {2022},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a2/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - F. M. Juraev
TI  - Local boundary value problems for a loaded equation of
JO  - Ufa mathematical journal
PY  - 2022
SP  - 37
EP  - 51
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a2/
LA  - en
ID  - UFA_2022_14_1_a2
ER  - 
%0 Journal Article
%A B. I. Islomov
%A F. M. Juraev
%T Local boundary value problems for a loaded equation of
%J Ufa mathematical journal
%D 2022
%P 37-51
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a2/
%G en
%F UFA_2022_14_1_a2
B. I. Islomov; F. M. Juraev. Local boundary value problems for a loaded equation of. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a2/

[1] I.M. Gelfand, “Nekotorye voprosy analiza i differentsialnykh uravnenii”, Uspekhi matem. nauk, 15:3(87) (1959), 3–19

[2] G.M. Struchina, “Zadacha o sopryazhenii dvukh uravnenii”, IFZh, 4:11 (1961), 99–104

[3] Ya.S. Uflyand, “K voprosu postroeniya rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, IFZh, 7:1 (1964), 89–92

[4] L.A. Zolina, “O kraevoi zadache dlya modelnogo uravneniya giperbolo-parabolichiskogo tipa”, ZhVM i MF, 6:6 (1966), 991–1001 | MR | Zbl

[5] E.I. Moiseev, N.I. Ionkin, “O zadache dlya uravneniya teploprovodnosti s dvukhtochechnymi kraevymi usloviyami”, Diff. uravneniya, 15:7 (1979), 1284–1295 | MR | Zbl

[6] T.D. Dzhuraev, A. Sopuev, M. Mamazhonov, Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, FAN, T., 1986, 220 pp. | MR

[7] M.S. Salakhitdinov, A.K. Urinov, Kraevye zadachi dlya uravnenii smeshannogo tipa so spektralnym parametrom, Fan, Tashkent, 1997, 165 pp. | MR

[8] E.I. Moiseev, T.N. Likhomanenko, “Ob odnoi nelokalnoi kraevoi zadache dlya uravneniya Lavrenteva–Bitsadze”, Doklady RAN, 446:3 (2012), 256–258 | Zbl

[9] T.Sh. Kal'menov, M.A. Sadybekov, “On a Frankl–type problem for a mixed parabolic–hyperbolicequation”, Sibirsk. Mat. Zh., 58:2 (2017), 298–304 | MR | Zbl

[10] K.B. Sabitov, “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Doklady RAN, 413:1 (2007), 23–26 | Zbl

[11] K.B. Sabitov, “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | Zbl

[12] K.B. Sabitov, “Initial-boundary value problem for a parabolic-hyperbolic equation with power-law degeneration on the type change line”, Diff. Equat., 47:10 (2011), 1490–1497 | DOI | MR | MR | Zbl

[13] K.B. Sabitov, “Initial boundary and inverse problems for the inhomogeneous equation of a mixed parabolic-hyperbolic equation”, Math. Notes, 102:3 (2017), 378–395 | DOI | MR | Zbl

[14] A.M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[15] A.M. Nakhushev, “Nonlocal problem and the Goursat problem for loaded hyperbolic equation and their application in prediction of ground moisture”, Soviet Math. Dokl., 19:5 (1978), 1243–1247 | MR | Zbl

[16] J. Wiener, L. Debnath, “A survey of partial differential equations with piecewise continuous arguments”, Internet J. Math. and Math. Scz., 18:2 (1995), 209–228 | DOI | MR | Zbl

[17] M.Kh. Shkhanukov, “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Diff. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[18] A.I. Kozhanov, “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:6 (2004), 784–795 | DOI | MR | Zbl

[19] M.T. Dzhenaliev, M.I. Ramazanov, Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, GYLYM, Almaty, 2010

[20] A. Kneser, “Belastete integralgleichungen”, Rendiconti del Circolo Mat. di Palermo, 37 (1914), 169–197 | DOI | Zbl

[21] A.M. Nakhushev, “Nagruzhennye uravneniya i ikh prilozheniya”, Diff. uravneniya, 19:1 (1983), 86–94 | MR | Zbl

[22] B. Islomov, D.M. Kuryazov, “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya vtorogo poryadka”, DAN RUz, 1–2 (1996), 3–6

[23] M.T. Dzhenaliev, K teorii lineinykh kraevykh zadach dlya nagruzhennykh differentsialnykh uravnenii, ITPM, Almaty, 1995

[24] A.Kh. Attaev., “The Cauchy problem for the Mc Kendrick–Von Foerster loaded equation”, Int. J. Pure Appl. Math., 113:4 (2017), 569–574

[25] U.I. Baltaeva, “The loaded parabolic–hyperbolic equation and its relation to non–local problems”, Nanosystems: Phys. Chem. Math., 8:4 (2017), 413–419 | DOI

[26] Yu.K. Sabitova, “Dirichlet problem for Lavrent'ev-Bitsadze equation with loaded summands”, Russ. Math. Iz. VUZ, 62:9 (2018), 35–51 | DOI | MR | Zbl

[27] K.U. Khubiev., “Zadachi so smescheniem dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 82–90 | MR | Zbl

[28] B. Islomov, U.I. Baltaeva, “Boundary value problems for the classical and mixed integro–differential equations with Riemann–Liuovil operators”, Int. J. Partial Differ. Equ., 2013:157947 (2013), 11–17

[29] B.S. Kishin, O.Kh. Abdullaev, “About a Problem for Loaded Parabolic-Hyperbolic Type Equation with Fractional Derivatives”, Int. J. Differ. Equ., 2016 (2016), 9815796, 6 pp. | MR | Zbl

[30] L.S. Pulkina, “Certain nonlocal problem for a degenerate hyperbolic equation”, Math. Notes, 51:3 (1992), 286–290 | DOI | MR | Zbl

[31] Zh.A. Balkizov, “Dirichlet boundary value problem for a third order parabolic–hyperbolic equation with degenerating type and order in the hyperbolicity domain”, Ufa Math. J., 9:2 (2017), 25–39 | DOI | MR | Zbl

[32] A.M. Nakhushev, “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Diff. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[33] B. Islomov, F.M. Dzhuraev, “Analog zadachi Trikomi dlya vyrozhdayuschegosya nagruzhennogo uravneniya parabolo-giperbolicheskogo tipa”, Uzbekskii matem. zhurn., 2 (2011), 75–85

[34] S.Z. Dzhamalov, R.R. Ashurov, “On a nonlocal boundary–value problem for second kind second-order mixed type loaded equation in a rectangle”, Uzbek Math. J., 3 (2018), 63–72 | DOI | MR | Zbl

[35] T.D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno–sostavnogo tipa, Fan, Tashkent, 1979 | MR

[36] A.M. Il'in, A.S. Kalashnikov, O.A. Oleinik, “Linear second-order partial differential equations of the parabolic type”, Russ. Math. Surv, 17:3 (1962), 1–146 | DOI | MR | Zbl

[37] S.Kh. Akbarova, Kraevye zadachi dlya uravnenii smeshannogo parabolo-giperbolicheskogo i elliptiko-parabolicheskogo tipov s dvumya liniyami i razlichnymi poryadkami vyrozhdeniya, Dis. ... kand. fiz.-mat. nauk, IM AN RUz, Tashkent, 1995, 120 pp.

[38] M.M. Smirnov, Equations of mixed type, Amer. Math. Soc., Providence, R.I., 1977 | MR | MR | Zbl

[39] S.G. Mikhlin, Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959

[40] S.A. Tersenov, Pervaya kraevaya zadacha dlya uravneniya parabolicheskogo tipa s menyayuschimsya napravleniem vremeni, Novosibirsk, 1978 | MR