The structure of foliations with integrable Ehresmann connection
Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 20-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We study foliations of arbitrary codimension $q$ on $n$-dimensional smooth manifolds admitting an integrable Ehresmann connection. The category of such foliations is considered, where isomorphisms preserve both foliations and their Ehresman connections. We show that this category can be considered as that of bifoliations covered by products. We introduce the notion of a canonical bifoliation and we prove that each foliation $(M, F)$ with integrable Ehresmann connection is isomorphic to some canonical bifoliation. A category of triples is constructed and we prove that it is equivalent to the category of foliations with integrable Ehresmann connection. In this way, the classification of foliations with integrable Ehresman connection is reduced to the classification of associated diagonal actions of discrete groups of diffeomorphisms of the product of manifolds. The classes of foliations with integrable Ehresmann connection are indicated. The application to $G$-foliations is considered.
Keywords: integrable Ehresmann connection for a foliation, global holonomy group, canonical bifoliation.
Mots-clés : foliation
@article{UFA_2022_14_1_a1,
     author = {N. I. Zhukova and K. I. Sheina},
     title = {The structure of foliations with  integrable {Ehresmann} connection},
     journal = {Ufa mathematical journal},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a1/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - K. I. Sheina
TI  - The structure of foliations with  integrable Ehresmann connection
JO  - Ufa mathematical journal
PY  - 2022
SP  - 20
EP  - 36
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a1/
LA  - en
ID  - UFA_2022_14_1_a1
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A K. I. Sheina
%T The structure of foliations with  integrable Ehresmann connection
%J Ufa mathematical journal
%D 2022
%P 20-36
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a1/
%G en
%F UFA_2022_14_1_a1
N. I. Zhukova; K. I. Sheina. The structure of foliations with  integrable Ehresmann connection. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a1/