Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra
Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 1-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem on complete classification of holomorphically homogeneous real hypersurfaces in two-dimensional complex spaces was resolved by E. Cartan in 1932. A similar description in the three-dimensional case was recently obtained by A. Loboda. In this work we discuss a part of classification of locally holomorphic homogeneous hypersurfaces in $4$-dimensional complex space being orbits in $\mathbb{C}^4$ by one family of $7$-dimensional Lie algebra. As it was shown in works by Beloshapka, Kossovskii, Loboda and other, the ideas by E. Cartan allow one to obtain rather simply the descriptions of the orbits for the algebras having Abelian ideals for rather large dimensions. In particular, the presence of a $4$-dimensional Abelian ideal in $7$-dimensional Lie algebra of holomorphic vector fields in $\mathbb{C}^4$ often gives rise to the tubularity property for all orbits of such algebra. The Lie algebras in the family we consider are direct sums of the algebra $\mathfrak{sl}(2)$ and several $4$-dimensional Lie algebras and they have at most $3$-dimensional Abelian subalgebras. By means of a technique of the simultaneous «flattening» of vector field we obtain a complete description of all Levi non-degenerate holomorphically homogeneous hypersurfaces being the orbits of the considered algebras in $\mathbb{C}^4$. Many of the obtained homogeneous hypersurfaces turn out to be tubular manifolds. At the same time, the issue on possible reduction of other hypersurfaces to tubes requires further studying. As an effective tool for such study, as well as for a detailed investigation of issues on holomorphic equivalent of the obtained orbits, the technique of Moser normal forms can serve. By means of this technique, we study the issue on the sphericity for representatives of one of the obtained family of hypersurfaces. However, the application of the method of normal forms for the hypersurfaces in complex spaces of dimension $4$ and higher requires a further developing of this technique.
Keywords: homogeneous hypersurface, holomorphic transformation
Mots-clés : decomposable Lie algebra.
@article{UFA_2022_14_1_a0,
     author = {A. V. Atanov},
     title = {Orbits of decomposable $7$-dimensional {Lie} algebras with $\mathfrak{sl}(2)$ subalgebra},
     journal = {Ufa mathematical journal},
     pages = {1--19},
     year = {2022},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/}
}
TY  - JOUR
AU  - A. V. Atanov
TI  - Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra
JO  - Ufa mathematical journal
PY  - 2022
SP  - 1
EP  - 19
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/
LA  - en
ID  - UFA_2022_14_1_a0
ER  - 
%0 Journal Article
%A A. V. Atanov
%T Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra
%J Ufa mathematical journal
%D 2022
%P 1-19
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/
%G en
%F UFA_2022_14_1_a0
A. V. Atanov. Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/

[1] E. Cartan., “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11 (1933), 17–90 | DOI | MR

[2] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl

[3] A.V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. Mat. in-ta im. V.A. Steklova RAN, 235, 2001, 114–142 | Zbl

[4] A.V. Loboda, “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | Zbl

[5] B. Doubrov, A. Medvedev, D. The, “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Mathematische Zeitschrift, 297 (2021), 669–709 | DOI | MR | Zbl

[6] I. Kossovskiy, A. Loboda, Classification of homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$, 2019, arXiv: 1906.11345

[7] A.V. Loboda, “Golomorfno-odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$”, Tr. MMO, 81, no. 2, 2020, 61–136

[8] B. Doubrov, J. Merker, D. The, “The Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, IMRN, 2021, rnab147 | DOI | MR

[9] M.G. Eastwood, V.V. Ezhov, “Homogeneous Hypersurfaces with Isotropy in Affine Four-Space”, Tr. Mat. in-ta im. V.A. Steklova RAN, 235, 2001, 57–70 | MR | Zbl

[10] M.G. Eastwood, V.V. Ezhov, “A classification of non-degenerate homogeneous equiaffine hypersurfaces in four complex dimensions”, Asian J. Math., 5:4 (2001), 721–740 | DOI | MR

[11] F. Dillen, L. Vrancken, “3-dimensional affine hypersurfaces in $\mathbb{R}^4$ with parallel cubic form”, Nagoya Math. J., 124 (1991), 41–53 | DOI | MR | Zbl

[12] A.V. Loboda, R.S. Akopyan, V.V. Krutskikh, “On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR | Zbl

[13] R.S. Akopyan, A.V. Atanov, “Nevyrozhdennye orbity v $\mathbb{C}^4$ razlozhimykh 7-mernykh algebr Li”, Sovremennye metody teorii kraevykh zadach, Materialy Mezhdunarodnoi konferentsii «Voronezhskaya vesennyaya matematicheskaya shkola. Pontryaginskie chteniya – XXXI», 2020, 30–32

[14] G.M. Mubarakzyanov, “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl

[15] A.V. Atanov, I.G. Kossovskii, A.V. Loboda, “Ob orbitakh deistvii 5-mernykh nerazreshimykh algebr Li v trekhmernom kompleksnom prostranstve”, DAN, 487:6 (2019), 7–10

[16] V.K. Beloshapka, I.G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[17] S.S. Chern, J.K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[18] A.V. Atanov, A.V. Loboda, “Ob orbitakh odnoi nerazreshimoi 5-mernoi algebry Li”, Matematicheskaya fizika i kompyuternoe modelirovanie, 22:2 (2019), 5–20 | MR

[19] A.V. Atanov, A.V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, 2019, 86–115 | MR

[20] L. Šnobl, P. Winternitz, Classification and Identification of Lie Algebras, AMS, Providence, R.I., 2014 | MR

[21] G.M. Mubarakzyanov, “Classification of real structures of Lie algebras of fifth order”, Izv. VUZov. Matem., 1963, no. 3(34), 99–106 | MR | Zbl

[22] A.V. Loboda, “Affine-homogeneous real hypersurfaces in $3$-dimensional complex space”, Vestnik Voronezh. Gosud. Univ. Ser. Fiz. Matem., 2 (2009), 71–91 | Zbl

[23] A.V. Isaev, M.A. Mishchenko, “Classification of spherical tube hypersurfaces having one minus in the signature of the Levi form”, Math. USSR-Izv., 33:3 (1989), 441–472 | MR | Zbl