Mots-clés : decomposable Lie algebra.
@article{UFA_2022_14_1_a0,
author = {A. V. Atanov},
title = {Orbits of decomposable $7$-dimensional {Lie} algebras with $\mathfrak{sl}(2)$ subalgebra},
journal = {Ufa mathematical journal},
pages = {1--19},
year = {2022},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/}
}
A. V. Atanov. Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$ subalgebra. Ufa mathematical journal, Tome 14 (2022) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/UFA_2022_14_1_a0/
[1] E. Cartan., “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11 (1933), 17–90 | DOI | MR
[2] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl
[3] A.V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. Mat. in-ta im. V.A. Steklova RAN, 235, 2001, 114–142 | Zbl
[4] A.V. Loboda, “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | Zbl
[5] B. Doubrov, A. Medvedev, D. The, “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Mathematische Zeitschrift, 297 (2021), 669–709 | DOI | MR | Zbl
[6] I. Kossovskiy, A. Loboda, Classification of homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$, 2019, arXiv: 1906.11345
[7] A.V. Loboda, “Golomorfno-odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$”, Tr. MMO, 81, no. 2, 2020, 61–136
[8] B. Doubrov, J. Merker, D. The, “The Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, IMRN, 2021, rnab147 | DOI | MR
[9] M.G. Eastwood, V.V. Ezhov, “Homogeneous Hypersurfaces with Isotropy in Affine Four-Space”, Tr. Mat. in-ta im. V.A. Steklova RAN, 235, 2001, 57–70 | MR | Zbl
[10] M.G. Eastwood, V.V. Ezhov, “A classification of non-degenerate homogeneous equiaffine hypersurfaces in four complex dimensions”, Asian J. Math., 5:4 (2001), 721–740 | DOI | MR
[11] F. Dillen, L. Vrancken, “3-dimensional affine hypersurfaces in $\mathbb{R}^4$ with parallel cubic form”, Nagoya Math. J., 124 (1991), 41–53 | DOI | MR | Zbl
[12] A.V. Loboda, R.S. Akopyan, V.V. Krutskikh, “On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR | Zbl
[13] R.S. Akopyan, A.V. Atanov, “Nevyrozhdennye orbity v $\mathbb{C}^4$ razlozhimykh 7-mernykh algebr Li”, Sovremennye metody teorii kraevykh zadach, Materialy Mezhdunarodnoi konferentsii «Voronezhskaya vesennyaya matematicheskaya shkola. Pontryaginskie chteniya – XXXI», 2020, 30–32
[14] G.M. Mubarakzyanov, “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl
[15] A.V. Atanov, I.G. Kossovskii, A.V. Loboda, “Ob orbitakh deistvii 5-mernykh nerazreshimykh algebr Li v trekhmernom kompleksnom prostranstve”, DAN, 487:6 (2019), 7–10
[16] V.K. Beloshapka, I.G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[17] S.S. Chern, J.K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR
[18] A.V. Atanov, A.V. Loboda, “Ob orbitakh odnoi nerazreshimoi 5-mernoi algebry Li”, Matematicheskaya fizika i kompyuternoe modelirovanie, 22:2 (2019), 5–20 | MR
[19] A.V. Atanov, A.V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, 2019, 86–115 | MR
[20] L. Šnobl, P. Winternitz, Classification and Identification of Lie Algebras, AMS, Providence, R.I., 2014 | MR
[21] G.M. Mubarakzyanov, “Classification of real structures of Lie algebras of fifth order”, Izv. VUZov. Matem., 1963, no. 3(34), 99–106 | MR | Zbl
[22] A.V. Loboda, “Affine-homogeneous real hypersurfaces in $3$-dimensional complex space”, Vestnik Voronezh. Gosud. Univ. Ser. Fiz. Matem., 2 (2009), 71–91 | Zbl
[23] A.V. Isaev, M.A. Mishchenko, “Classification of spherical tube hypersurfaces having one minus in the signature of the Levi form”, Math. USSR-Izv., 33:3 (1989), 441–472 | MR | Zbl