On coefficient multipliers for area Privalov classes
Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 80-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of describing the Taylor coefficients of functions analytic in a disk was first resolved for the Nevanlinna class by an outstanding Soviet mathematician S.N. Mergelyan in the beginning of 20th century. Later, the studies devoted to obtaining similar estimates in various classes of analytic functions were made by known Russian and foreign specialists in the complex analysis: G. Hardy, J. Littlewood, A.A. Friedman, N. Yanagihara, M. Stoll, S.V. Shvedenko and others. In the paper we introduce a area Privalov class $\tilde{\Pi}_q$, $(q>0)$, being a generalization of a known area Nevanlinna class. In the first part of the paper we obtain a sharp estimate for the growth of an arbitrary function in the area Privalov class, we describe the Taylor coefficients for this function. In the second part of the work, on the base of the obtained estimates we describe completely the coefficient multipliers from area Privalov classes into the Hardy classes. In a simplified form this problem can be formulated as follows: by what factors the Taylor coefficients of a function in a given class $\tilde{\Pi}_q$, $q>0$, should be multiplied in order to get the Taylor coefficients of a function in a Hardy class.
Keywords: area Privalov class, growth, analytic functions.
Mots-clés : Taylor coefficients, multiplier
@article{UFA_2021_13_4_a7,
     author = {E. G. Rodikova},
     title = {On coefficient multipliers for area {Privalov} classes},
     journal = {Ufa mathematical journal},
     pages = {80--90},
     year = {2021},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a7/}
}
TY  - JOUR
AU  - E. G. Rodikova
TI  - On coefficient multipliers for area Privalov classes
JO  - Ufa mathematical journal
PY  - 2021
SP  - 80
EP  - 90
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a7/
LA  - en
ID  - UFA_2021_13_4_a7
ER  - 
%0 Journal Article
%A E. G. Rodikova
%T On coefficient multipliers for area Privalov classes
%J Ufa mathematical journal
%D 2021
%P 80-90
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a7/
%G en
%F UFA_2021_13_4_a7
E. G. Rodikova. On coefficient multipliers for area Privalov classes. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 80-90. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a7/

[1] V.I. Gavrilov, A.V. Subbotin, D.A. Efimov, Boundary properties of analytic functions (further contribution), Izd-vo MGU, M., 2012

[2] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, GITTL, M.–L., 1941; R. Nevanlinna, Eindeutige analytische Funktionen, Springer-Verlag, Berlin, 1953 ; Analytic functions, Springer-Verlag, Berlin, 1970 | Zbl | Zbl

[3] M.A. Evgrafov, “The behavior of a power series for functions of the class $H_{\delta}$ on the boundary of the disk of convergence”, Izv. AN SSSR. Ser. Mat., 16:5 (1952), 481–492 (in Russian) | Zbl

[4] I.I. Privalov, Boundary properties of single-valued analytic functions, Izd-vo MGU, M., 1941 (in Russian)

[5] I.I. Privalov, Boundary properties of analytic functions, GITTL, M. (in Russian)

[6] E.G. Rodikova, “On estimates for expansion coefficients for certain classes of functions analytic in a disk”, Proceedings of the VI Petrozavodsk International Conference “Complex Analysis and Applications” (Petrozavodsk, 2012), 64–69 (in Russian)

[7] E.G. Rodikova, Factorization, characterization of root sets, and questions of interpolation in weighted spaces of analytic functions, PhD thesis, Bryansk, 2014 (in Russian)

[8] E.G. Rodikova, “On properties of zeros of functions from Privalov classes in disk”, Uchen. Zapis. Bryansk. Gosud. Univr., 2019, no. 4, 19–22 (in Russian)

[9] E.G. Rodikova, “On interpolation sequences in the Privalov space”, Proceedings of International Scientific Conference “Complex analysis, mathematical physics and nonlinear equations” (Ufa, 2020), 52–53 (in Russian)

[10] E.G. Rodikova, V.A. Bednazh, “On interpolation for the Privalov classes in a disk”, Sibir. Elekt. Matem. Izv. Siber., 16 (2019), 1762–1775 (in Russian) | Zbl

[11] W. Rudin, Functional analysis, McGraw-Hill Book Comp., New York, 1973 | Zbl

[12] F.A. Shamoyan, “Parametric representation and description of the root sets of weighted classes of functions holomorphic in the disk”, Siberian Math. J., 40:6 (1999), 1211–1229 | DOI | Zbl

[13] F.A. Shamoyan, Weighted spaces with mixed norm, Izd. Bryanskogo Gosud. Univ., Bryansk, 2014 (in Russian)

[14] F.A. Shamoyan, “Some properties of the zero sets of a function from Privalov's class in a disk”, Zap. Nauch. Semin. POMI, 480, 2019, 199–205 (in Russian)

[15] F.A. Shamoyan, E.N. Shubabko, “A class of functions holomorphic in the disk”, J. Math. Sci., 120:5 (2004), 1784–1790 | DOI | Zbl

[16] F.A. Shamoyan, V.A. Bednazh, O.V. Prihod'ko, “On zero sets of certain weighted classes of analytic functions in a disk”, Vestnik Bryansk. Gosud. Univ., 2008, no. 4, 85–92 (in Russian)

[17] S.V. Shvedenko, “Hardy classes and related spaces of analytic functions in the unit circle, polydisc and ball”, J. Soviet Math., 39:6 (1987), 3011–3087 | DOI | Zbl | Zbl

[18] S.V. Shvedenko, “The rate of growth and Taylor coefficients of functions of Nevanlinna's area class $\mathbf{N}$”, Soviet Math. (Iz. VUZ), 30:6 (1986), 56–60 | Zbl

[19] P.L. Duren, Theory of $H^p$ spaces, Pure and Appl. Math., 38, Academic Press, NY, 1970

[20] O. Frostman, “Sur les produits des Blaschke”, Kungl. Fysiografiska Sallskapets i Lund Forhandlingar, Proa. Roy. Physiog. Soa. Lund., 12:15 (1942), 169–182 | Zbl

[21] W.K. Hayman, B. Korenblum, “A critical growth rate for functions regular in a disk”, Michigan Math. J., 27:1 (1980), 21–30 | DOI | Zbl

[22] M. Pavlovic, Introduction to function spaces in a disk, Matematicki Institut SANU, Beograd, 2004

[23] E.G. Rodikova, “Coefficient multipliers for the Privalov class in a disk”, Zhurn. SFU. Ser. Matem. Fiz., 11:6 (2018), 723–732 | Zbl

[24] E.G. Rodikova, “Multiple interpolation in the Privalov classes in a disk”, Filomat, 35:1 (2021), 271–286 | DOI

[25] E.G. Rodikova, F.A. Shamoyan, “On the differentiation in the Privalov classes”, Zhurn. SFU. Ser. Matem. Fiz., 13:5 (2020), 622–630 | Zbl

[26] M. Stoll, “Mean growth and Taylor coefficients of some topological algebras of analytic functions”, Ann. Polon. Math., 35:2 (1977), 139–158 | DOI | Zbl

[27] N. Yanagihara, “Multipliers and linear functionals for the class $N^+$”, Transactions of the Amer. Math. Soc., 180 (1973), 449–461 | Zbl

[28] N. Yanagihara, “Mean growth and Taylor coefficients of some classes of functions”, Ann. Polon. Math., 30 (1974), 37–48 | DOI | Zbl