@article{UFA_2021_13_4_a6,
author = {N. A. Rautian},
title = {Exponential stability of semigroups generated by {Volterra} integro-differential equations},
journal = {Ufa mathematical journal},
pages = {63--79},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a6/}
}
N. A. Rautian. Exponential stability of semigroups generated by Volterra integro-differential equations. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 63-79. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a6/
[1] A.A. Ilyushin, B.E. Pobedrya, Foundations of mathematical theory of thermal viscoelasticity, Nauka, M., 1970 (in Russian)
[2] R.M. Christensen, Theory of viscoelasticity. An introduction, Academic Press, New York, 1971
[3] N.D. Kopachevsky, S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Operator Theory: Advances and Applications, 146, Nonself-adjoint Problems for Viscous Fluids, Birkhauser Verlag, Basel/Switzerland, 2003 | Zbl
[4] J.E. Munoz Rivera, “Asymptotic behaviour in linear viscoelasticity”, Quart. Appl. Math., 52:4 (1994), 629–648 | Zbl
[5] Yu.N. Rabotnov, Elements of hereditary solid mechanics, Nauka, M., 1977 ; Mir Publishers, M., 1980 | Zbl
[6] G. Amendola, M. Fabrizio, J.M. Golden, Thermodynamics of Materials with memory. Theory and applications, Springer, New-York – Dordrecht – Heidelberg – London, 2012 | Zbl
[7] M.E. Gurtin, A.C. Pipkin, “General theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31:2 (1968), 113–126 | DOI | Zbl
[8] A.A. Lokshin, Yu.V. Suvorova, Mathematical theory of wave propagation in media with memory, Izd-vo MGU, M., 1982 (in Russian)
[9] A.V. Lykov, Heat and mass transfer. Reference book, Energia, M., 1978 (in Russian)
[10] R.K. Miller, “An integrodifferential equation for rigid heat conductors with memory”, J. Math. Anal. Appl., 66:2 (1978), 313–332 | DOI | Zbl
[11] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Springer-Verlag, Berlin, 1980 | Zbl
[12] N.A. Rautian, “Semigroups generated by Volterra integro-differential equations”, Diff. Equat., 56:9 (2020), 1193–1211 | DOI | Zbl
[13] V.V. Vlasov, N.A. Rautian, Spectral analysis of functional differential equations, Max Press, M., 2016 (in Russian)
[14] V.V. Vlasov, N.A. Rautian, “Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory”, J. Math. Sci., 233:4 (2018), 555–577 | DOI | Zbl
[15] V.V. Vlasov, N.A. Rautian, “Well-posed solvability and the representation of solutions of integro-differential equations arising in viscoelasticity”, Diff. Equat., 55:4 (2019), 561–574 | DOI | Zbl
[16] V.V. Vlasov, N.A. Rautian, “A Study of Operator Models Arising in Problems of Hereditary Mechanics”, J. Math. Sci., 244:2 (2020), 170–182 | DOI | Zbl
[17] A. Eremenko, S. Ivanov, “Spectra of the Gurtin – Pipkin type equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | Zbl
[18] C.M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., 37:4 (1970), 297–308 | DOI | Zbl
[19] K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000 | Zbl
[20] V. Pata, “Stability and exponential stability in linear viscoelasticity”, Milan Journal of Mathematics, 77:1 (2009), 333–360 | DOI | Zbl
[21] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966 | Zbl
[22] S.G. Krejn, Linear differential equations in Banach space, Amer. Math. Soc., Providence, R.I., 1972 | Zbl
[23] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1970 | Zbl
[24] R. Bellman, Stability theory of differential equations, McGraw-Hill Book Company, New York, 1953 | Zbl