Mots-clés : central binomial coefficient, Binet, Gauss, Malmsten formulae
@article{UFA_2021_13_4_a5,
author = {A. B. Kostin and V. B. Sherstyukov},
title = {Integral representations of~quantities associated with {Gamma} function},
journal = {Ufa mathematical journal},
pages = {50--62},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/}
}
A. B. Kostin; V. B. Sherstyukov. Integral representations of quantities associated with Gamma function. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/
[1] D.V. Slavić, “On inequalities for $\Gamma(x+1)/\Gamma(x+1/2)$”, Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, 498/541 (1975), 17–20 | Zbl
[2] A.Yu. Popov, “Two-sided estimates for the central binomial coefficient”, Chelyab. Fiz. Mat. Zhurn., 5:1 (2020), 56–69 (in Russian) | Zbl
[3] I.V. Tikhonov, V.B. Sherstyukov, D.G. Tsvetkovich, “Comparative analysis of two-sided estimates of the central binomial coefficient”, Chelyab. Fiz. Mat. Zhurn., 5:1 (2020), 70–95 (in Russian) | Zbl
[4] A.B. Kostin, V.B. Sherstyukov, “Asymptotic Behavior of Remainders of Special Number Series”, J. Math. Sci., 251:6 (2020), 814–838 | DOI | Zbl
[5] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, v. 2, Cambridge University Press, Cambridge, 1927 | Zbl
[6] H. Masayoshi, Problems And Solutions In Real Analysis, On Number Theory And Its Applications, 14, Second Edition, World Scientific Publishing Company, Singapore, 2016
[7] C.J. Malmstén, “Sur la formule $hu'_x=\Delta u_x-\frac{h}{2}\Delta u'_x+\frac{B_1 h^2}{2!}\Delta u''_x-\frac{B_2 h^4}{4!}\Delta u^{IV}_x+ etc.$”, J. Reine Angew. Math., 35:1 (1847), 55–82 | Zbl
[8] I. Blagouchine, “Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results”, The Ramanujan J., 35:1 (2014), 21–110 | DOI | Zbl
[9] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999 | Zbl
[10] J. Binet, “Mémoire sur les intégrales définies eulériennes et sur leur application à la theorie des suites ainsi qu'à l'èvaluation des fonctions des grandes nombres”, J. l'Ecole Polytechnique, 16:1 (1838), 100–149
[11] L.I. Volkovyskij, G.A. Lunts, I.G. Aramanovich, A collection of problems on complex analysis, Pergamon Press, Oxford, 1965 | Zbl
[12] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley Sons, New York, 1964
[13] G. Pólya, G. Szegö, Problems and theorem in analysis, v. I, Series, integral calculus, theory of functions, Springer, Berlin, 1988