Integral representations of quantities associated with Gamma function
Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 50-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a series of issues related with integral representations of Gamma functions and its quotients. The base of our study is two classical results in the theory of functions. One of them is a well-known first Binet formula, the other is a less known Malmsten formula. These special formulae express the values of the Gamma function in an open right half-plane via corresponding improper integrals. In this work we show that both results can be extended to the imaginary axis except for the point $z=0$. Under such extension we apply various methods of real and complex analysis. In particular, we obtain integral representations for the argument of the complex quantity being the value of the Gamma function in a pure imaginary point. On the base of the mentioned Malmsten formula at the points $z\neq0$ in the closed right half-plane, we provide a detailed derivation of the integral representation for a special quotient expressed via the Gamma function: $D(z)\equiv\Gamma(z+\frac{1}{2})/\Gamma(z+1)$. This fact on the positive semi-axis was mentioned without the proof in a small note by Dušan Slavić in 1975. In the same work he provided two-sided estimates for the quantity $D(x)$ as $x>0$ and at the natural points $D(x)$ coincided with the normalized central binomial coefficient. These estimates mean that $D(x)$ is enveloped on the positive semi-axis by its asymptotic series. In the present paper we briefly discuss the issue on the presence of this property on the asymptotic series $D(z)$ in a closed angle $|\arg z|\leqslant\pi/4$ with a punctured vertex. By the new formula representing $D(z)$ on the imaginary axis we obtain explicit expressions for the quantity $|D(iy)|^2$ and for the set $\mathrm{Arg}\, D(iy)$ as $y>0$. We indicate a way of proving the second Binet formula employing the technique of simple fractions.
Keywords: Gamma function, asymptotic expansion, integral representation, enveloping series in the complex plane.
Mots-clés : central binomial coefficient, Binet, Gauss, Malmsten formulae
@article{UFA_2021_13_4_a5,
     author = {A. B. Kostin and V. B. Sherstyukov},
     title = {Integral representations of~quantities associated with {Gamma} function},
     journal = {Ufa mathematical journal},
     pages = {50--62},
     year = {2021},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/}
}
TY  - JOUR
AU  - A. B. Kostin
AU  - V. B. Sherstyukov
TI  - Integral representations of quantities associated with Gamma function
JO  - Ufa mathematical journal
PY  - 2021
SP  - 50
EP  - 62
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/
LA  - en
ID  - UFA_2021_13_4_a5
ER  - 
%0 Journal Article
%A A. B. Kostin
%A V. B. Sherstyukov
%T Integral representations of quantities associated with Gamma function
%J Ufa mathematical journal
%D 2021
%P 50-62
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/
%G en
%F UFA_2021_13_4_a5
A. B. Kostin; V. B. Sherstyukov. Integral representations of quantities associated with Gamma function. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a5/

[1] D.V. Slavić, “On inequalities for $\Gamma(x+1)/\Gamma(x+1/2)$”, Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, 498/541 (1975), 17–20 | Zbl

[2] A.Yu. Popov, “Two-sided estimates for the central binomial coefficient”, Chelyab. Fiz. Mat. Zhurn., 5:1 (2020), 56–69 (in Russian) | Zbl

[3] I.V. Tikhonov, V.B. Sherstyukov, D.G. Tsvetkovich, “Comparative analysis of two-sided estimates of the central binomial coefficient”, Chelyab. Fiz. Mat. Zhurn., 5:1 (2020), 70–95 (in Russian) | Zbl

[4] A.B. Kostin, V.B. Sherstyukov, “Asymptotic Behavior of Remainders of Special Number Series”, J. Math. Sci., 251:6 (2020), 814–838 | DOI | Zbl

[5] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, v. 2, Cambridge University Press, Cambridge, 1927 | Zbl

[6] H. Masayoshi, Problems And Solutions In Real Analysis, On Number Theory And Its Applications, 14, Second Edition, World Scientific Publishing Company, Singapore, 2016

[7] C.J. Malmstén, “Sur la formule $hu'_x=\Delta u_x-\frac{h}{2}\Delta u'_x+\frac{B_1 h^2}{2!}\Delta u''_x-\frac{B_2 h^4}{4!}\Delta u^{IV}_x+ etc.$”, J. Reine Angew. Math., 35:1 (1847), 55–82 | Zbl

[8] I. Blagouchine, “Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results”, The Ramanujan J., 35:1 (2014), 21–110 | DOI | Zbl

[9] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999 | Zbl

[10] J. Binet, “Mémoire sur les intégrales définies eulériennes et sur leur application à la theorie des suites ainsi qu'à l'èvaluation des fonctions des grandes nombres”, J. l'Ecole Polytechnique, 16:1 (1838), 100–149

[11] L.I. Volkovyskij, G.A. Lunts, I.G. Aramanovich, A collection of problems on complex analysis, Pergamon Press, Oxford, 1965 | Zbl

[12] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley Sons, New York, 1964

[13] G. Pólya, G. Szegö, Problems and theorem in analysis, v. I, Series, integral calculus, theory of functions, Springer, Berlin, 1988