@article{UFA_2021_13_4_a10,
author = {O. Sh. Sharipov and A. F. Norjigitov},
title = {Law of large numbers for weakly dependent random variables with values in $D\left[0,1\right]$},
journal = {Ufa mathematical journal},
pages = {123--130},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a10/}
}
TY - JOUR AU - O. Sh. Sharipov AU - A. F. Norjigitov TI - Law of large numbers for weakly dependent random variables with values in $D\left[0,1\right]$ JO - Ufa mathematical journal PY - 2021 SP - 123 EP - 130 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a10/ LA - en ID - UFA_2021_13_4_a10 ER -
O. Sh. Sharipov; A. F. Norjigitov. Law of large numbers for weakly dependent random variables with values in $D\left[0,1\right]$. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 123-130. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a10/
[1] D. Li, Y. Qi, A. Rosalsky, “A refinement of the Kolmogorov-Marcinkiewicz-Zygmund strong law of large numbers”, J. Theor. Prob., 24:4 (2011), 1130–1156 | DOI | Zbl
[2] A. De Acosta, “Inequalities for $B$-valued random vectors with applications to the law of large numbers”, Ann. Prob., 9:1 (1981), 157–161 | DOI | Zbl
[3] F. Hechner, B. Heinkel, “The Marcinkiewicz-Zygmund LLN in Banach spaces. A generalized martingale approach”, J. Theor. Prob., 23:2 (2010), 509–522 | DOI | Zbl
[4] J. Hoffmann-Jorgensen, G. Pisier, “The law of large numbers and the central limit theorem in Banach spaces”, Ann. Prob., 4:4 (1976), 587–599 | DOI | Zbl
[5] M. Ledoux, M. Talagrand, Probability in Banach spaces: Isoperimetry and processes, Springer, Berlin, 1991 | Zbl
[6] G. Pisier, “Probabilistic methods in the geometry of Banach spaces”, Probability and Analysis, Lecture Notes in Mathematics, 1206, Springer, Berlin, 1986, 167–241 | DOI
[7] J. Rosinski, “Remarks on Banach spaces of stable type”, Prob. Math. Stat., 1:1 (1980), 67–71 | Zbl
[8] R.L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Springer, Berlin, 1978 | Zbl
[9] R. Ranga Rao, “The law of large numbers for $D\left[0,1\right]$-valued random variables”, Theor. Prob. Appl., 8:1 (1963), 70–74 | DOI | Zbl
[10] P.Z. Daffer, R.L. Taylor, “Laws of large numbers for $D\left[0,1\right]$”, Ann. Prob., 7:1 (1979), 85–95 | DOI | Zbl
[11] P. Bezandry, “Laws of large numbers for $D\left[0,1\right]$”, Stat. Prob. Lett., 76:10 (2006), 981–985 | DOI | Zbl
[12] J. Kuelbs, J. Zinn, “Some stability results for vector valued random variables”, Ann. Prob., 7:1 (1979), 75–84 | DOI | Zbl
[13] Q. Shao, “Maximal inequalities for partial sums of $\rho $-mixing sequences”, Ann. Prob., 23:2 (1995), 948–965 | DOI | Zbl
[14] M. Bloznelis, V. Paulauskas, “On the central limit theorem in the space $D\left[0,1\right]$”, Stat. Prob. Lett., 17:2 (1993), 105–111 | DOI | Zbl
[15] V. Paulauskas, Ch. Stieve, “On the central limit theorem in $D\left[0,1\right]$ and $D(\left[0,1\right],H)$”, Liet. Matem. Rink, 30 (1990), 567–579
[16] P. Billingsley, Convergence of probability measures, Wiley, 1968 | Zbl