@article{UFA_2021_13_4_a0,
author = {N. F. Abuzyarova},
title = {On condition of representing a subspace in {Schwartz} space invariant with respect to differentiation as direct sum of its residual and exponential components},
journal = {Ufa mathematical journal},
pages = {3--7},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a0/}
}
TY - JOUR AU - N. F. Abuzyarova TI - On condition of representing a subspace in Schwartz space invariant with respect to differentiation as direct sum of its residual and exponential components JO - Ufa mathematical journal PY - 2021 SP - 3 EP - 7 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a0/ LA - en ID - UFA_2021_13_4_a0 ER -
%0 Journal Article %A N. F. Abuzyarova %T On condition of representing a subspace in Schwartz space invariant with respect to differentiation as direct sum of its residual and exponential components %J Ufa mathematical journal %D 2021 %P 3-7 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a0/ %G en %F UFA_2021_13_4_a0
N. F. Abuzyarova. On condition of representing a subspace in Schwartz space invariant with respect to differentiation as direct sum of its residual and exponential components. Ufa mathematical journal, Tome 13 (2021) no. 4, pp. 3-7. http://geodesic.mathdoc.fr/item/UFA_2021_13_4_a0/
[1] A. Aleman, B. Korenblum, “Derivation-Invariant Subspaces of $C^{\infty}$”, Comp. Methods and Function Theory, 8:2 (2008), 493–512 | DOI | Zbl
[2] N.F. Abuzyarova, “Spectral synthesis in the Schwartz space of infinitely differentiable functions”, Dokl. Math., 90:1 (2014), 479–482 | DOI | Zbl
[3] A. Aleman, A. Baranov, Yu. Belov, “Subspaces of $C^{\infty}$ invariant under the differentiation”, J. Funct. Anal., 268 (2015), 2421–2439 | DOI | Zbl
[4] N.F. Abuzyarova, “Spectral synthesis for the differentiation operator in the Schwartz space”, Math. Notes, 102:2 (2017), 137–148 | DOI | Zbl
[5] N.F. Abuzyarova, “Some properties of principal submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 8:1 (2016), 1–12 | DOI
[6] N.F. Abuzyarova, “On 2-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 8:3 (2016), 8–21 | DOI | Zbl
[7] N.F. Abuzyarova, “Principal submodules in the module of entire functions, which is dual to the Schwarz space, and weak spectral synthesis in the Schwartz space”, J. Math. Sci., 241:6 (2019), 658–671 | DOI | Zbl
[8] A. Baranov, Yu. Belov, “Synthesizable differentiation-invariant subspaces”, Geom. Funct. Anal., 29:1 (2019), 44–71 | DOI | Zbl
[9] N.F. Abuzyarova, “Representation of synthesizable differentiation-invariant subspaces of the Schwartz space”, Dokl. Math., 103:3 (2021), 99–102 | DOI | Zbl
[10] P. Koosis, The logarithmic integral, v. II, Cambridge Univ. Press, Cambridge, 1992 | Zbl
[11] L. Ehrenpreis, “Solution of Some Problems of Division, IV”, Amer. J. Math., 57:1 (1960), 522–588 | DOI
[12] N.F. Abuzyarova, “On Shifts of the Sequence of Integers Generating Functions that are Invertible in the Sense of Ehrenpreis”, J. Math. Sci., 251:2 (2020), 161–175 | DOI | Zbl