Continuous-discrete dynamic models
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 95-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider dynamic models with an aftereffect in the form of functional differential equations with continuous and discrete time. We formulate a general control problem with respect to a given system of target functionals and a brief summary of known results on solvability of this problem under polyhedral point control constraints. In concluding section we present results on estimating the set of attainability under integral restrictions for the control. The proposed version of the synthesis of continuous and discrete systems is based on the systematic use of the theory abstract functional differential equation and has certain advantages in the study of systems and processes with aftereffect. Continuous-discrete functional-differential models allow us to take into consideration the aftereffects when modeling, including cases of complete memory, and effects arising when impulse perturbations (shocks) are taken into consideration and they are leading to jump changes in the phase state by components with continuous time.
Keywords: functional-differential systems, control problems, hybrid systems, set of attainability.
@article{UFA_2021_13_3_a7,
     author = {V. P. Maksimov},
     title = {Continuous-discrete dynamic models},
     journal = {Ufa mathematical journal},
     pages = {95--103},
     year = {2021},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - Continuous-discrete dynamic models
JO  - Ufa mathematical journal
PY  - 2021
SP  - 95
EP  - 103
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/
LA  - en
ID  - UFA_2021_13_3_a7
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T Continuous-discrete dynamic models
%J Ufa mathematical journal
%D 2021
%P 95-103
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/
%G en
%F UFA_2021_13_3_a7
V. P. Maksimov. Continuous-discrete dynamic models. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 95-103. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/

[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations. Methods and applications, Hindawi Publishing Corp., New York, 2007 | Zbl

[2] D. L. Andrianov, V. O. Arbuzov, S. V. Ivliev, V. P. Maksimov, P. M. Simonov, “Ecomomic dynamics models: theory, applications, computer aided implementation”, Perm University Herald. Economy, 4(27) (2015), 33–53

[3] V. A. Baturin, E. V. Goncharova, N. S. Maltugueva, “Iterative methods for solution of problems of optimal control of logic-dynamic systems”, J. Comp. Syst. Sci. Int., 49:5 (2010), 731–739 | DOI | Zbl

[4] Zh. I. Bakhtina, “Some questions of the theory of dynamic models in time scales”, Aktual. Napr. Nauch. Issl. XXI veka: Teor. Prakt., 2:5-1 (2014), 19–22 (in Russian)

[5] A. S. Bortakovskii, “Necessary optimality conditions for control of logical-dynamical systems”, J. Comp. Syst. Sci. Int., 46:6 (2007), 854–871 | DOI | Zbl

[6] A. S. Bortakovskii, “Optimal and suboptimal control for sets of trajectories of deterministic continuous-discrete systems”, J. Comp. Syst. Sci. Int., 48:1 (2009), 14–29 | DOI | Zbl

[7] A. S. Bortakovskii, “Optimal and suboptimal control of bundle of trajectories of deterministic logical-dynamical systems”, J. Comp. Syst. Sci. Int., 48:6 (2009), 873–890 | DOI | Zbl

[8] R. Gabasov, N. S. Paulianok, F. M. Kirillova, “Optimal control of some hybrid systems”, J. Comp. Syst. Sci. Int., 49:6 (2010), 872–882 | DOI | Zbl

[9] V. P. Maksimov, “Attainable values of on-target functionals for a functional differential system with impulse action”, Vestn. Tambovskogo Univ. Ser. Estestv. Tekn. Nauki, 23:123 (2018), 441–447 (in Russian)

[10] V. P. Maksimov, “On the construction and estimates of the Cauchy matrix for systems with aftereffect”, Trudy Inst. Matem. Mekh. UrO RAN, 25, no. 3, 2019, 153–162 (in Russian)

[11] V. P. Maksimov, “Attainable values of on-target functionals in economic dynamics problems”, Prikl. Matem. Vopr. Upravl., 4 (2019), 124–135 (in Russian)

[12] V. P. Maksimov, “On the construction of program control in the problem on attainable values of on-target functionals for dynamic economic models with discrete memory”, Prikl. Matem. Vopr. Upravl., 3 (2020), 89–104 (in Russian)

[13] V. M. Marchenko, Z. Zaczkiewicz, “Solution representations for controlled hybrid differentialdifference impulsive systems”, Diff. Equat., 45:12 (2009), 1776–1786 | DOI | Zbl

[14] V. M. Marchenko, O. N. Poddubnaya, “Solution representations and relative controllability of linear differential algebraic systems with several delays”, Doklady Math., 72:2 (2005), 824–828 | Zbl

[15] S. A. Minyuk, O. A. Panasik, “Controllability and attainability criteria for linear differential-algebraic systems”, J. Comp. Syst. Sci. Int., 47:5 (2008), 673–686 | DOI | Zbl

[16] Yu. V. Pokornyi, Zh. I. Bakhtina, “On the Stieltjes procedure for closing gaps in time scales”, Math. Notes, 86:5 (2009), 690–692 | DOI | Zbl

[17] R. Agarwal, M. Bohner, D. O-Regan, A. Peterson, “Dynamic equations on time scales: A survey”, Journal of Computational and Applied Mathematics, 141:1–2 (2002), 1–26 | DOI | Zbl

[18] R. P. Agarwal, M. Bohner, A. Boichuk, O. Strakh, “Fredholm boundary value problems for perturbed systems of dynamic equations on time scales”, Mathematical Methods in the Applied Sciences, 38:17 (2015), 4178–4186 | DOI | Zbl

[19] G. Agranovich, “Observability criteria of linear discrete-continuous LTI systems with continuoustime measurements”, Functional Differential Equations, 16:1 (2009), 35–51 | Zbl

[20] G. Agranovich, “Observer for discrete-continuous LTI systems with continuous-time measurements”, Functional Differential Equations, 18:1–2 (2011), 3–12 | Zbl

[21] N. V. Azbelev, L. F. Rakhmatullina, “Theory of linear abstract functional-differential equations and applications”, Memoirs on Differential Equations and Mathematical Physics, 8 (1996), 1–102

[22] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003 | Zbl

[23] A. S. Bortakovski, “Optimal and suboptimal control for sets of trajectories of deterministic continuous discrete systems”, J. of Computer and Systems Sciences International, 48:1 (2009), 14–29 | DOI | Zbl

[24] M. Branicky, V. Borkar, S. Mitter, “A unified framework for hybrid control: Model and optimal control theory”, IEEE Transactions on Automatic Control, 43 (1998), 31–45 | DOI | Zbl

[25] E. I. Bravyi, V. P. Maksimov, P. M. Simonov, “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics, 8 (2020), 1832 | DOI

[26] A. L. Chadov, V. P. Maksimov, “Linear boundary value problems and control problems for a class of functional differential equations with continuous and discrete times”, Functional Differential Equations, 19:1–2 (2012), 49–62 | Zbl

[27] F. Clarke, R. Vinter, “Optimal multiprocesses”, SIAM J. Control Optim., 27:5 (1989), 1072–1091 | DOI | Zbl

[28] M. De la Sen, “On the controller synthesis for linear hybrid systems”, IMA Journal of Math. Control and Information, 18:4 (2001), 503–529 | DOI

[29] M. De la Sen, “Identification of a class of hybrid systems”, IMA Journal of Math. Control and Information, 20:3 (2003), 233–261 | DOI | Zbl

[30] A. Ichikava, H. Katayama, Linear Time Varying Systems and Sampled-Data Systems, Springer Verlag, London, 2001

[31] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, AMS, New York, 1977 | Zbl

[32] V. P. Maksimov, “On the $\ell$-Attainability Sets of Continuous Discrete Functional Differential Systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI

[33] V. P. Maksimov, “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:1 (2019), 40–51 (in Russian) | DOI | Zbl

[34] V. P. Maksimov, “On a class of linear continuous-discrete systems with discrete memory”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:3 (2020), 385–395 (in Russian) | DOI

[35] D. Sworder, J. Boid, Estimation Problems in Hybrid Systems, Cambridge University Press, Cambridge, 2000