@article{UFA_2021_13_3_a7,
author = {V. P. Maksimov},
title = {Continuous-discrete dynamic models},
journal = {Ufa mathematical journal},
pages = {95--103},
year = {2021},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/}
}
V. P. Maksimov. Continuous-discrete dynamic models. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 95-103. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a7/
[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations. Methods and applications, Hindawi Publishing Corp., New York, 2007 | Zbl
[2] D. L. Andrianov, V. O. Arbuzov, S. V. Ivliev, V. P. Maksimov, P. M. Simonov, “Ecomomic dynamics models: theory, applications, computer aided implementation”, Perm University Herald. Economy, 4(27) (2015), 33–53
[3] V. A. Baturin, E. V. Goncharova, N. S. Maltugueva, “Iterative methods for solution of problems of optimal control of logic-dynamic systems”, J. Comp. Syst. Sci. Int., 49:5 (2010), 731–739 | DOI | Zbl
[4] Zh. I. Bakhtina, “Some questions of the theory of dynamic models in time scales”, Aktual. Napr. Nauch. Issl. XXI veka: Teor. Prakt., 2:5-1 (2014), 19–22 (in Russian)
[5] A. S. Bortakovskii, “Necessary optimality conditions for control of logical-dynamical systems”, J. Comp. Syst. Sci. Int., 46:6 (2007), 854–871 | DOI | Zbl
[6] A. S. Bortakovskii, “Optimal and suboptimal control for sets of trajectories of deterministic continuous-discrete systems”, J. Comp. Syst. Sci. Int., 48:1 (2009), 14–29 | DOI | Zbl
[7] A. S. Bortakovskii, “Optimal and suboptimal control of bundle of trajectories of deterministic logical-dynamical systems”, J. Comp. Syst. Sci. Int., 48:6 (2009), 873–890 | DOI | Zbl
[8] R. Gabasov, N. S. Paulianok, F. M. Kirillova, “Optimal control of some hybrid systems”, J. Comp. Syst. Sci. Int., 49:6 (2010), 872–882 | DOI | Zbl
[9] V. P. Maksimov, “Attainable values of on-target functionals for a functional differential system with impulse action”, Vestn. Tambovskogo Univ. Ser. Estestv. Tekn. Nauki, 23:123 (2018), 441–447 (in Russian)
[10] V. P. Maksimov, “On the construction and estimates of the Cauchy matrix for systems with aftereffect”, Trudy Inst. Matem. Mekh. UrO RAN, 25, no. 3, 2019, 153–162 (in Russian)
[11] V. P. Maksimov, “Attainable values of on-target functionals in economic dynamics problems”, Prikl. Matem. Vopr. Upravl., 4 (2019), 124–135 (in Russian)
[12] V. P. Maksimov, “On the construction of program control in the problem on attainable values of on-target functionals for dynamic economic models with discrete memory”, Prikl. Matem. Vopr. Upravl., 3 (2020), 89–104 (in Russian)
[13] V. M. Marchenko, Z. Zaczkiewicz, “Solution representations for controlled hybrid differentialdifference impulsive systems”, Diff. Equat., 45:12 (2009), 1776–1786 | DOI | Zbl
[14] V. M. Marchenko, O. N. Poddubnaya, “Solution representations and relative controllability of linear differential algebraic systems with several delays”, Doklady Math., 72:2 (2005), 824–828 | Zbl
[15] S. A. Minyuk, O. A. Panasik, “Controllability and attainability criteria for linear differential-algebraic systems”, J. Comp. Syst. Sci. Int., 47:5 (2008), 673–686 | DOI | Zbl
[16] Yu. V. Pokornyi, Zh. I. Bakhtina, “On the Stieltjes procedure for closing gaps in time scales”, Math. Notes, 86:5 (2009), 690–692 | DOI | Zbl
[17] R. Agarwal, M. Bohner, D. O-Regan, A. Peterson, “Dynamic equations on time scales: A survey”, Journal of Computational and Applied Mathematics, 141:1–2 (2002), 1–26 | DOI | Zbl
[18] R. P. Agarwal, M. Bohner, A. Boichuk, O. Strakh, “Fredholm boundary value problems for perturbed systems of dynamic equations on time scales”, Mathematical Methods in the Applied Sciences, 38:17 (2015), 4178–4186 | DOI | Zbl
[19] G. Agranovich, “Observability criteria of linear discrete-continuous LTI systems with continuoustime measurements”, Functional Differential Equations, 16:1 (2009), 35–51 | Zbl
[20] G. Agranovich, “Observer for discrete-continuous LTI systems with continuous-time measurements”, Functional Differential Equations, 18:1–2 (2011), 3–12 | Zbl
[21] N. V. Azbelev, L. F. Rakhmatullina, “Theory of linear abstract functional-differential equations and applications”, Memoirs on Differential Equations and Mathematical Physics, 8 (1996), 1–102
[22] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003 | Zbl
[23] A. S. Bortakovski, “Optimal and suboptimal control for sets of trajectories of deterministic continuous discrete systems”, J. of Computer and Systems Sciences International, 48:1 (2009), 14–29 | DOI | Zbl
[24] M. Branicky, V. Borkar, S. Mitter, “A unified framework for hybrid control: Model and optimal control theory”, IEEE Transactions on Automatic Control, 43 (1998), 31–45 | DOI | Zbl
[25] E. I. Bravyi, V. P. Maksimov, P. M. Simonov, “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics, 8 (2020), 1832 | DOI
[26] A. L. Chadov, V. P. Maksimov, “Linear boundary value problems and control problems for a class of functional differential equations with continuous and discrete times”, Functional Differential Equations, 19:1–2 (2012), 49–62 | Zbl
[27] F. Clarke, R. Vinter, “Optimal multiprocesses”, SIAM J. Control Optim., 27:5 (1989), 1072–1091 | DOI | Zbl
[28] M. De la Sen, “On the controller synthesis for linear hybrid systems”, IMA Journal of Math. Control and Information, 18:4 (2001), 503–529 | DOI
[29] M. De la Sen, “Identification of a class of hybrid systems”, IMA Journal of Math. Control and Information, 20:3 (2003), 233–261 | DOI | Zbl
[30] A. Ichikava, H. Katayama, Linear Time Varying Systems and Sampled-Data Systems, Springer Verlag, London, 2001
[31] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, AMS, New York, 1977 | Zbl
[32] V. P. Maksimov, “On the $\ell$-Attainability Sets of Continuous Discrete Functional Differential Systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI
[33] V. P. Maksimov, “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:1 (2019), 40–51 (in Russian) | DOI | Zbl
[34] V. P. Maksimov, “On a class of linear continuous-discrete systems with discrete memory”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:3 (2020), 385–395 (in Russian) | DOI
[35] D. Sworder, J. Boid, Estimation Problems in Hybrid Systems, Cambridge University Press, Cambridge, 2000