Invariant subspaces in half-plane
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 57-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we consider sequences of specified order $\rho(r)$. We find necessary and sufficient conditions guaranteeing that a sequence $\Lambda^2\supseteq\Lambda^1$ consists a regularly distributed set $\Lambda$ with a prescribed angular density containing $\Lambda^1$. These results cover a most part of knonw results on constructions of regularly distributed sets. We consider various applications of the results. On the base of them, we prove theorems on splitting of entire functions of a specified order $\rho(r)$. Moreover, we find an asymptotic representation of an entire function with a measurable sequence of zeroes. This generalizes a classical representation by B.Ya. Levin with a regularly distributed zero set to the case of a function with a measurable zero set. This representation is based on the obtained representation for a function, the zero set of which has a zero density. Its implication is the strengthening of a known result by M.L. Cartwright on the type of a function with a zero set having a zero density. Another corollary is the way for constructing entire functions of exponential type with a prescribed indicator and the minimal possible zero density.
Keywords: sequence, specified order, angular density, splitting of functions, entire function, indicator.
@article{UFA_2021_13_3_a5,
     author = {A. S. Krivosheev and O. A. Krivosheeva and A. I. Rafikov},
     title = {Invariant subspaces in half-plane},
     journal = {Ufa mathematical journal},
     pages = {57--79},
     year = {2021},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a5/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
AU  - A. I. Rafikov
TI  - Invariant subspaces in half-plane
JO  - Ufa mathematical journal
PY  - 2021
SP  - 57
EP  - 79
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a5/
LA  - en
ID  - UFA_2021_13_3_a5
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%A A. I. Rafikov
%T Invariant subspaces in half-plane
%J Ufa mathematical journal
%D 2021
%P 57-79
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a5/
%G en
%F UFA_2021_13_3_a5
A. S. Krivosheev; O. A. Krivosheeva; A. I. Rafikov. Invariant subspaces in half-plane. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 57-79. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a5/

[1] B. Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980

[2] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian)

[3] G. Pólya, “Untersuchungen uber Lucken und Singularitaten von potenzreihen”, Math. Zeits., 291 (1929), 549–640 | DOI

[4] A. A. Kondratyuk, “Entire functions with positive zeroes having finite maximal density”, Theory of functions, functional analysis and their applications, 7, Kharkov, 1968, 37–52 (in Russian) | Zbl

[5] G. L. Lunts, “On a theorem related with growth of entire functions of integer order”, Izv. Akad. Nauk Arm. SSR. Mat., 5:4 (1970), 358–370 | Zbl

[6] G. N. Shilova, “A theorem on divisors of entire functions of finite order”, Math. Notes, 48:2 (1990), 799–804 | DOI | Zbl

[7] A. I. Abdulnagimov, A. S. Krivoshyev, “Properly distributed subsequence on the line”, Ufa Math. J., 7:1 (2015), 3–12 | DOI

[8] A. I. Abdulnagimov, A. S. Krivosheyev, “Properly distributed subsets in complex plane”, St. Petersburg Math. J., 28:4 (2017), 433–464 | DOI | Zbl

[9] A. I. Abdulnagimov, A. S. Krivosheyev, “Representation of analytic functions”, Ufa Math. J., 8:4 (2016), 3–23 | DOI | Zbl

[10] M. L. Cartwright, “On integral functions of integral order”, Proc. London Math. Soc., 33 (1932), 209–224 | DOI