@article{UFA_2021_13_3_a3,
author = {N. V. Zaitseva},
title = {Hyperbolic differential-difference equations with nonlocal potentials},
journal = {Ufa mathematical journal},
pages = {36--43},
year = {2021},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a3/}
}
N. V. Zaitseva. Hyperbolic differential-difference equations with nonlocal potentials. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 36-43. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a3/
[1] J. Bernoulli, “Meditationes. Dechordis vibrantibis”, Commentaril Academiae Scientiarum Imperialis Petropolitanae, 3 (1728), 13–28
[2] H. Burkhardt, “Entwicklungen nach oscillirenden Funktionen und Integration der Differentialgleichungen der mathematischen Physik”, Jahresber. Deutsch. Math. Ver., 10 (1908), 1–1804
[3] E. Pinney, Ordinary Difference-Differential Equations, University of California press, Berkeley–Los Angeles, 1958 | Zbl
[4] R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press, New York, 1963 | Zbl
[5] A. L. Skubachevskii, Elliptic functional differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997 | Zbl
[6] A. L. Skubachevskii, “Nonclassical boundary value problems. I”, J. Math. Sci., 155:2 (2008), 199–334 | DOI
[7] A. L. Skubachevskii, “Nonclassical boundary-value problems. II”, J. Math. Sci., 166:4 (2010), 377–561 | DOI | Zbl
[8] A. L. Skubachevskii, “Boundary-value problems for elliptic functional-differential equations and their applications”, Russ. Math. Surv., 71:5 (2016), 801–906 | DOI | Zbl
[9] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, J. Math. Sci., 223:4 (2017), 351–493 | DOI | Zbl
[10] E. P. Ivanova, “On smooth solutions of differential-difference equations with incommensurable shifts of arguments”, Math. Notes, 105:1 (2019), 140–144 | DOI | Zbl
[11] A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci., 216:3 (2016), 345–496 | DOI | Zbl
[12] A. B. Muravnik, “Asymptotic properties of solutions of the Dirichlet problem in the half-plane for differential-difference elliptic equations”, Math. Notes, 100:4 (2016), 579–588 | DOI | Zbl
[13] A. B. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | Zbl
[14] A. B. Muravnik, “Elliptic problems with nonlocal potential arising in models of nonlinear optics”, Math. Notes, 105:5 (2019), 734–746 | DOI | Zbl
[15] A. B. Muravnik, “Half-plane differential-difference elliptic problems with generalkind nonlocal potentials”, Complex Variables and Elliptic Equations, 2020 | DOI
[16] A. B. Muravnik, “Elliptic differential-difference equations in the half-space”, Math. Notes, 108:5 (2020), 727–732 | DOI | Zbl
[17] V. V. Vlasov, D. A. Medvedev, “Functional-differential equations in Sobolev spaces and related problems of spectral theory”, J. Math. Sci., 164:5 (2010), 659–841 | DOI | Zbl
[18] N. V. Zaitseva, “On global classical solutions of hyperbolic differential-difference equations”, Dokl. Math., 101:2 (2020), 115–116 | DOI
[19] N. V. Zaitseva, “Global classical solutions of some two-dimensional hyperbolic differential-difference equations”, Differ. Equat., 56:6 (2020), 734–739 | DOI | Zbl
[20] N. V. Zaitseva, “Classical solutions of hyperbolic differential-difference equations with several nonlocal terms”, Lobachevskii J. of Math., 42:1 (2021), 231–236 | DOI | Zbl
[21] I. M. Gel'fand, G. E. Shilov, “Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy problem”, Uspekhi Matem. Nauk, 8:6 (1953), 3–54 (in Russian) | Zbl