Exponential series in normed spaces of analytic functions
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 27-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			There is a classical well-known theorem by A.F. Leontiev on representing functions analytic in a convex domain $D$ and continuous up to the boundary by series of form $\sum_{k=1}^\infty f_ke^{\lambda_kz}$ converging in the topology of the space $H(D)$, that is, uniformly on compact subsets in $D$. 
In the paper we prove the possibility of representing the functions in \begin{equation*} A_0(D)=\left \{f\in H(D)\bigcap C(\overline D):\ \|f \|:=\sup_{z\in \overline D}|f(z)|\right \} \end{equation*} by the exponential series converging in a stronger topology, namely, there exists an integer number $s>0$ such that 
1) for each bounded convex domain $D$ there exists a system of exponentials $e^{\lambda_kz},$ ${k\in \mathbb{N}}$, such that each function $f\in H(D)\bigcap C^{(s)}(\overline D)$ is represented as a series over this system converging in the norm of the space $A_0(D)$; 
2) for each bounded convex domain $D$ there exists a system of exponentials $e^{\lambda_kz},$ ${ k\in \mathbb{N}}$ such that each function $f\in A_0(D)$ is represented as a series over this system converging in the norm \begin{equation*} \|f\| = \sup_{z\in D}|f(z)|(d(z))^s, \end{equation*} where $d(z)$ is the distance from a point $z$ to the boundary of the domain $D$. The number $s$ is related with the existence of entire functions with a maximal possible asymptotic estimate. 
In particular cases, when $D$ is a polygon or a domina with a smooth boundary possessing a smooth curvature separated from zero, we can assume that $s=4$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
analytic function, entire function, exponential series.
Mots-clés : Fourier–Laplace transform, interpolation
                    
                  
                
                
                Mots-clés : Fourier–Laplace transform, interpolation
@article{UFA_2021_13_3_a2,
     author = {R. A. Bashmakov and K. P. Isaev and A. A. Makhota},
     title = {Exponential series in normed spaces of analytic functions},
     journal = {Ufa mathematical journal},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a2/}
}
                      
                      
                    TY - JOUR AU - R. A. Bashmakov AU - K. P. Isaev AU - A. A. Makhota TI - Exponential series in normed spaces of analytic functions JO - Ufa mathematical journal PY - 2021 SP - 27 EP - 35 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a2/ LA - en ID - UFA_2021_13_3_a2 ER -
R. A. Bashmakov; K. P. Isaev; A. A. Makhota. Exponential series in normed spaces of analytic functions. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 27-35. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a2/
