The boundary Morera theorem for domain $\tau^+(n-1)$
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 191-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we will continue to construct an analysis in the future tube and move on to study the Lie ball. The Lie ball can be realized as a future tube. These realizations will be the subject of our research. These methods turn out to be convenient for computing the Bergman, Cauchy-Szegö and Poisson kernels in this domain. In the theory of functions Morera's theorems have been studied by many mathematicians. In the complex plane, the functions with one-dimensional holomorphic extension property are trivial but Morera's boundary theorems are not available. Therefore, the results of the work are essential in the multidimensional case. In this article, we proved the boundary Morera theorem for the domain ${{\tau }^{+}}\left( n-1 \right)$. An analog of Morera's theorem is given, in which integration is carried out along the boundaries of analytic disks. For this purpose, we use the automorphisms ${{\tau }^{+}}\left( n-1 \right)$ and the invariant Poisson kernel in the domain ${{\tau }^{+}}\left( n-1 \right)$. Moreover, an analogue of Stout's theorem on functions with the one-dimensional holomorphic continuation property is obtained for the domain ${{\tau }^{+}}\left( n-1 \right)$. In addition, generalizations of Tumanov's theorem is obtained for a smooth function from the given class of CR manifolds.
Keywords: Classical domains, Lie ball, realization, future tube, Shilov boundary, holomorphic continuation, Morera's theorem, analytic disk, Hardy spaces.
Mots-clés : Poisson kernel
@article{UFA_2021_13_3_a13,
     author = {G. Khudayberganov and J. Sh. Abdullayev},
     title = {The boundary {Morera} theorem for domain $\tau^+(n-1)$},
     journal = {Ufa mathematical journal},
     pages = {191--205},
     year = {2021},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a13/}
}
TY  - JOUR
AU  - G. Khudayberganov
AU  - J. Sh. Abdullayev
TI  - The boundary Morera theorem for domain $\tau^+(n-1)$
JO  - Ufa mathematical journal
PY  - 2021
SP  - 191
EP  - 205
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a13/
LA  - en
ID  - UFA_2021_13_3_a13
ER  - 
%0 Journal Article
%A G. Khudayberganov
%A J. Sh. Abdullayev
%T The boundary Morera theorem for domain $\tau^+(n-1)$
%J Ufa mathematical journal
%D 2021
%P 191-205
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a13/
%G en
%F UFA_2021_13_3_a13
G. Khudayberganov; J. Sh. Abdullayev. The boundary Morera theorem for domain $\tau^+(n-1)$. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 191-205. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a13/

[1] E. Cartan, “Sur les domaines bornes homogenes de l'espace de $n$ variables complexes”, Abh. Math. Sern. Univ. Hamburg, 11 (1935), 116–162 | DOI

[2] C. L. Siegel, Analytic functions of several complex variables, Princeton, New Jersey, 1949 | Zbl

[3] Amer. Math. Soc., Providence, RI, 1963

[4] I. I. Pjateckiĭ-Sapiro, Automorphic functions and the geometry of classical domains, Gordon and Breach, New York, 1969

[5] M.I.T. Press, Cambridge, 1966

[6] V. S. Vladimirov, Generalized functions in mathematical physics, Nauka, 1979 | Zbl

[7] Encycl. Math. Sci., 8, 1994, 179–253

[8] Amer. Math. Soc., Providence, RI, 1992 | Zbl

[9] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983 | DOI | Zbl

[10] L. A. Aizenberg, Carleman Formulas in complex analysis, Nauka, Novosibirsk, 1990 | Zbl

[11] A. Nagel, W. Rudin, “Moebius-invariant function spaces on balls and spheres”, Duke Math., 43:1 (1976), 841–865 | Zbl

[12] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math., 44:1 (1977), 105–108 | DOI

[13] A. Koranyi, “The Poisson integral for generalized half-planes and bounded symmetric domaines”, Ann. Math., 82:2 (1965), 332–350 | DOI | Zbl

[14] J. Globevnik, “A boundary Morera theorem”, J. Geom. Anal., 3 (1993), 269–277 | DOI | Zbl

[15] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math., 64:3 (1991), 571–615 | DOI | Zbl

[16] E. Grinberg, “A boundary analogue of Morera's theorem on the unit ball of $\mathbb{C}^n$”, Proc. Amer. Math. Soc., 102 (1988), 114–116 | Zbl

[17] Math. USSR Sb., 64:1 (1989), 129–140 | DOI | Zbl

[18] Siberian Math. J., 32:1 (1991), 137–139 | DOI

[19] Siberian Math. J., 12:1 (1971), 1–7 | DOI

[20] M. Agranovsky, C. A. Berenstein, D. C. Chang, “Morera theorems for holomorphic $H^p$-spaces in the Heisenberg group”, J. Reine Angew. Math., 443 (1993), 49–89 | Zbl

[21] B. T. Kurbanov, “Morera theorem for certain unbounded domains”, Proceedings of International Conference “Mathematical Models and Methods of Studying Them”, v. 2, Institute of Computational Modeling, Krasnoyarsk, 2001, 49–51 (in Russian)

[22] B. T. Kurbanov, “Boundary Morera theorem for the generalized upper half-plane”, Higher dimensional complex analysis, Krasnoyarsk State University, Krasnoyarsk, 2002, 68–78 (in Russian)

[23] A. M. Kytmanov, S. G. Myslivets, Multidimensional integral representations, Springer, Cham, 2015 | Zbl

[24] Siberian Math. J., 36:6 (1995), 1171–1174 | DOI | Zbl

[25] Siberian Math. J., 38:2 (1997), 302–311 | DOI | Zbl

[26] S. G. Myslivets, “On holomorpic continuation of functions along complex curves”, Topics in Complex Analysis, Differential Geometry and Mathematical Physics, Third Int. Workshop on Complex Structures and Vector Fields (Varna, 1996), World Scientific, 1996, 39–45

[27] A. M. Kytmanov, S. G. Myslivets, “On holomorphic continuation of functions in Siegel domains”, J. Natural Geom., 17 (2000), 11–20 | Zbl

[28] S. G. Myslivets, “Boundary Morera theorem on the Poincare sphere”, Complex analysis and differential operators, Krasnoyarsk State University, Krasnoyarsk, 2000, 97–102

[29] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | Zbl

[30] Siber. Math. J., 40:3 (1999), 506–514 | DOI | DOI | Zbl

[31] S. Kosbergenov, “On the boundary Morera theorem for the ball and the polydisk”, Complex Analysis and Mathematical Physics, Krasnoyarsk State University, Krasnoyarsk, 1998, 59–65 (in Russian)

[32] Russian Math. (Iz. VUZ), 45:4 (2001), 26–30 | Zbl

[33] G. Khudayberganov, Z. K. Matyakubov, “Boundary version of the Morera theorem for a matrix ball of the second Type”, J. Siber. Fed. Univ. Math. Phys., 7:4 (2014), 466–471 (in Russian) | DOI | Zbl

[34] G. Kh. Khudayberganov, B. P. Otemuratov, U. S. Rakhmonov, “Boundary Morera theorem for the matrix ball of the third type”, J. Siber. Fed. Univ. Math. Phys., 11:1 (2018), 40–45 (in Russian) | DOI | Zbl

[35] I. Kh. Musin, P. V. Yakovleva, “On a space of smooth functions on a convex unbounded set in $\mathbb{R}^n$ admitting holomorphic extension in $\mathbb{C}^n$”, Cent. Eur. J. Math., 10:2 (2012), 665–692 | DOI | Zbl

[36] I. Kh. Musin, P. V. Fedotova, “On a class of infinitely differentiable functions on unbounded convex set in $\mathbb{R}^n$ admitting holomorphic continuation in $\mathbb{C}^n$”, Ufimsk. Mat. Zhurn., 1:2 (2009), 75–100 (in Russian) | Zbl

[37] B. P. Otemuratov, “Analogs of Morera's theorem for integrable functions in classical domains”, Uzbek. Matem. Zhurn., 3 (2012), 115–122

[38] B. P. Otemuratov, B. Kutlymuratov, “Boundary theorem of Morera on the Poincare sphere for integrable functions”, Uzbek. Matem. Zhurn., 4 (2010), 185–190