Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 174-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem on parametric resonance for linear periodic Hamiltonian systems depending on a small parameter. We propose new formulae based on the methods of the perturbation theory for linear operators in the problem on approximate construction of multipliers for linear non-autonomous periodic Hamiltonian systems. We focus on obtaining the formulae for the first correctors of perturbations of multiple definite and indefinite multipliers. The proposed formulae lead to new Lyapunov stability criteria for linear periodic Hamiltonian systems in critical cases. We consider applications to the problem on parametric resonance in main resonances. The obtained results are formulated in terms of the original equations and lead us to effective formulae and algorithms. The effectiveness of the proposed formulae is demonstrated by solving the problem of plotting the boundaries of the stability regions of triangular libration points of a planar bounded elliptic three-body problem.
Keywords: Hamiltonian system, stability, small parameter, parametric resonance, perturbation theory, three-body problem, libration point.
Mots-clés : multiplier
@article{UFA_2021_13_3_a12,
     author = {M. G. Yumagulov and L. S. Ibragimova and A. S. Belova},
     title = {Perturbation theory methods in problem of parametric resonance for linear periodic {Hamiltonian} systems},
     journal = {Ufa mathematical journal},
     pages = {174--190},
     year = {2021},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/}
}
TY  - JOUR
AU  - M. G. Yumagulov
AU  - L. S. Ibragimova
AU  - A. S. Belova
TI  - Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems
JO  - Ufa mathematical journal
PY  - 2021
SP  - 174
EP  - 190
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/
LA  - en
ID  - UFA_2021_13_3_a12
ER  - 
%0 Journal Article
%A M. G. Yumagulov
%A L. S. Ibragimova
%A A. S. Belova
%T Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems
%J Ufa mathematical journal
%D 2021
%P 174-190
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/
%G en
%F UFA_2021_13_3_a12
M. G. Yumagulov; L. S. Ibragimova; A. S. Belova. Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 174-190. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/

[1] A. P. Markeev, Linear Hamiltonian systems and some problems on stability of motion of satellite around the mass center, Inst. Komput. Issl., M., 2009 (in Russian)

[2] V. A. Yakubovich, V. M. Starzhinskij, Linear differential equations with periodic coefficients, John Wiley Sons, New York; Halsted Press Book, Jerusalem, 1975 | Zbl

[3] V. F. Zhuravlev, F. G. Petrov, M. M. Shunderyuk, Selected problems in Hamiltonian mechanics, Lenand, M., 2015 (in Russian)

[4] V. Lanchares, “On the stability of Hamiltonian dinamical systems”, Monografias Matematicas Garca de Galdeano, 39 (2014), 155–166 | Zbl

[5] K. Meyer, G. Hall, D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 60, 2nd ed., Springer, New York, 2009 | DOI

[6] J. Moser, Lectures on Hamiltonian mechanics, Nauka, M., 1973 (in Russian)

[7] V. A. Yakubovich, V. M. Starzhinski, Parametric resonance in linear systems, Nauka, M., 1987 (in Russian)

[8] B. P. Demidovich, “Lectures on mathematical stability theory”, Nauka, M., 1967 (in Russian)

[9] D. Treschev, Introduction to the perturbation theory of Hamiltonian systems, Fazis, M., 1998 (in Russian)

[10] A. P. Seyranian, A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications, World Scientific, NJ, 2003 | Zbl

[11] A. P. Markeev, “Libration points in celestial mechanics and cosmodynamics”, Nauka, M., 1978 (in Russian)

[12] A. P. Markeev, “On a multiple resonance in linear Hamiltonian systems”, Dokl. RAN, 402:3 (2005), 539–543 | DOI

[13] Doklady Phys., 50:5 (2005), 278–282 | DOI

[14] A. D. Bruno, “On types of stability in Hamilton systems”, Preprint of Keldysh Inst. Appl. Math., 2020, 021, 24 pp. (in Russian)

[15] A. D. Bruno, “Normal form of Hamilton system with periodic perturbation”, Preprint of Keldysh Inst. Appl. Math., 2019, 057, 27 pp. (in Russian)

[16] O. V. Kholostova, “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelinein. Dinam., 13:4 (2017), 477–504 (in Russian) | Zbl

[17] B. S. Bardin, E. A. Chekina, “On the constructive algorithm for stability investigation of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in first-order resonance case”, Mech. Solids, 53, Suppl. 2 (2018), 15–25 | DOI | Zbl

[18] A. Elipe, V. Lanchares, A. Pascual, “On the stability of equilibria in two-degrees of freedom hamiltonian systems under resonances”, J. Nonlinear Sci., 19 (2005), 305–319 | DOI

[19] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer Verlag, Berlin, 1963 | Zbl

[20] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966 | Zbl

[21] L. S. Ibragimova L. S. I. G. Fanina, M. G. Yumagulov, “The asymptotic formulae for the problem of the construction hyperbolic and stability regions of dynamical systems”, Ufa Math. J., 8:3 (2016), 58–78 | DOI | Zbl

[22] M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Methods for studying the stability of linear periodic systems depending on a small parameter”, Itogi Nauk. Tekhn. Ser. Sovrem. Mat. Pril. Temat. Obz., 163, 2019, 113–126 (in Russian)

[23] A. B. Batkhin, A. D. Bruno, V. P. Varin, “Stability sets of multi-parametric Hamiltonian systems”, Preprints of Keldysh Inst. Appl. Math., 2011, 042, 32 pp. (in Russian)

[24] G. E. Roberts, “Linear Stability of the Elliptic Lagrangian Triangle Solutions in the Three-Body Problem”, Journal of Differential Equations, 182:1 (2002), 191–218 | DOI | Zbl

[25] T. Kovacs, “Stability chart of the triangular points in the elliptic restricted problem of three bodies”, Mon. Not. R. Astron. Soc., 430:4 (2013), 2755–2760 | DOI

[26] M. G. Yumagulov, O. N. Belikova, N. R. Isanbaeva, “Bifurcation near boundaries of regions of stability of libration points in the three-body problem”, Astron. Rep., 62:2 (2018), 144–153 | DOI