Mots-clés : multiplier
@article{UFA_2021_13_3_a12,
author = {M. G. Yumagulov and L. S. Ibragimova and A. S. Belova},
title = {Perturbation theory methods in problem of parametric resonance for linear periodic {Hamiltonian} systems},
journal = {Ufa mathematical journal},
pages = {174--190},
year = {2021},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/}
}
TY - JOUR AU - M. G. Yumagulov AU - L. S. Ibragimova AU - A. S. Belova TI - Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems JO - Ufa mathematical journal PY - 2021 SP - 174 EP - 190 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/ LA - en ID - UFA_2021_13_3_a12 ER -
%0 Journal Article %A M. G. Yumagulov %A L. S. Ibragimova %A A. S. Belova %T Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems %J Ufa mathematical journal %D 2021 %P 174-190 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/ %G en %F UFA_2021_13_3_a12
M. G. Yumagulov; L. S. Ibragimova; A. S. Belova. Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 174-190. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a12/
[1] A. P. Markeev, Linear Hamiltonian systems and some problems on stability of motion of satellite around the mass center, Inst. Komput. Issl., M., 2009 (in Russian)
[2] V. A. Yakubovich, V. M. Starzhinskij, Linear differential equations with periodic coefficients, John Wiley Sons, New York; Halsted Press Book, Jerusalem, 1975 | Zbl
[3] V. F. Zhuravlev, F. G. Petrov, M. M. Shunderyuk, Selected problems in Hamiltonian mechanics, Lenand, M., 2015 (in Russian)
[4] V. Lanchares, “On the stability of Hamiltonian dinamical systems”, Monografias Matematicas Garca de Galdeano, 39 (2014), 155–166 | Zbl
[5] K. Meyer, G. Hall, D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 60, 2nd ed., Springer, New York, 2009 | DOI
[6] J. Moser, Lectures on Hamiltonian mechanics, Nauka, M., 1973 (in Russian)
[7] V. A. Yakubovich, V. M. Starzhinski, Parametric resonance in linear systems, Nauka, M., 1987 (in Russian)
[8] B. P. Demidovich, “Lectures on mathematical stability theory”, Nauka, M., 1967 (in Russian)
[9] D. Treschev, Introduction to the perturbation theory of Hamiltonian systems, Fazis, M., 1998 (in Russian)
[10] A. P. Seyranian, A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications, World Scientific, NJ, 2003 | Zbl
[11] A. P. Markeev, “Libration points in celestial mechanics and cosmodynamics”, Nauka, M., 1978 (in Russian)
[12] A. P. Markeev, “On a multiple resonance in linear Hamiltonian systems”, Dokl. RAN, 402:3 (2005), 539–543 | DOI
[13] Doklady Phys., 50:5 (2005), 278–282 | DOI
[14] A. D. Bruno, “On types of stability in Hamilton systems”, Preprint of Keldysh Inst. Appl. Math., 2020, 021, 24 pp. (in Russian)
[15] A. D. Bruno, “Normal form of Hamilton system with periodic perturbation”, Preprint of Keldysh Inst. Appl. Math., 2019, 057, 27 pp. (in Russian)
[16] O. V. Kholostova, “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelinein. Dinam., 13:4 (2017), 477–504 (in Russian) | Zbl
[17] B. S. Bardin, E. A. Chekina, “On the constructive algorithm for stability investigation of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in first-order resonance case”, Mech. Solids, 53, Suppl. 2 (2018), 15–25 | DOI | Zbl
[18] A. Elipe, V. Lanchares, A. Pascual, “On the stability of equilibria in two-degrees of freedom hamiltonian systems under resonances”, J. Nonlinear Sci., 19 (2005), 305–319 | DOI
[19] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer Verlag, Berlin, 1963 | Zbl
[20] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966 | Zbl
[21] L. S. Ibragimova L. S. I. G. Fanina, M. G. Yumagulov, “The asymptotic formulae for the problem of the construction hyperbolic and stability regions of dynamical systems”, Ufa Math. J., 8:3 (2016), 58–78 | DOI | Zbl
[22] M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Methods for studying the stability of linear periodic systems depending on a small parameter”, Itogi Nauk. Tekhn. Ser. Sovrem. Mat. Pril. Temat. Obz., 163, 2019, 113–126 (in Russian)
[23] A. B. Batkhin, A. D. Bruno, V. P. Varin, “Stability sets of multi-parametric Hamiltonian systems”, Preprints of Keldysh Inst. Appl. Math., 2011, 042, 32 pp. (in Russian)
[24] G. E. Roberts, “Linear Stability of the Elliptic Lagrangian Triangle Solutions in the Three-Body Problem”, Journal of Differential Equations, 182:1 (2002), 191–218 | DOI | Zbl
[25] T. Kovacs, “Stability chart of the triangular points in the elliptic restricted problem of three bodies”, Mon. Not. R. Astron. Soc., 430:4 (2013), 2755–2760 | DOI
[26] M. G. Yumagulov, O. N. Belikova, N. R. Isanbaeva, “Bifurcation near boundaries of regions of stability of libration points in the three-body problem”, Astron. Rep., 62:2 (2018), 144–153 | DOI