@article{UFA_2021_13_3_a11,
author = {A. V. Chernov},
title = {On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation},
journal = {Ufa mathematical journal},
pages = {152--173},
year = {2021},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a11/}
}
TY - JOUR AU - A. V. Chernov TI - On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation JO - Ufa mathematical journal PY - 2021 SP - 152 EP - 173 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a11/ LA - en ID - UFA_2021_13_3_a11 ER -
%0 Journal Article %A A. V. Chernov %T On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation %J Ufa mathematical journal %D 2021 %P 152-173 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a11/ %G en %F UFA_2021_13_3_a11
A. V. Chernov. On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 152-173. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a11/
[1] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nonlinear functional analysis and its applications to partial differential equations, Nauchnyi mir, M., 2008 (in Russian)
[2] A. A. Zhidkov, A. V. Kalinin, “Some issues of mathematical and numerical modelling of a global eletric circuit in atmosphere”, Vestnik Nizhegorodskogo Univ. im N.I. Lobachevskogo, 6:1 (2009), 150–158 (in Russian)
[3] A. V. Kalinin, N. N. Slyunyaev, “Initial-boundary value problems for the equations of the global atmospheric electric circuit”, J. Math. Anal. Appl., 450:1 (2017), 112–136 | DOI | Zbl
[4] E. A. Mareev, S. V. Anisimov, “Geophysical studies of the global electric circuit”, Izv. Phys. Solid Earth, 44:10 (2008), 760–769 | DOI
[5] E. A. Mareev, “Global electric circuit research: achievements and prospects”, Physics Uspekhi, 53:5 (2010), 504–511 | DOI | DOI
[6] J. Jansky, V. P. Pasko, “Effects of conductivity perturbations in time-dependent global electric circuit model”, J. Geophys. Res.: Space Phys., 120:12 (2015), 10654–10668 | DOI
[7] V. V. Denisenko, M. J. Rycroft, R. G. Harrison, “Mathematical simulation of the ionospheric electric field as a part of the global electric circuit”, Surv. Geophys., 40:1 (2019), 1–35 | DOI
[8] V. N. Morozov, Mathematical modelling of atmosphere-electric processes taking into account influence of aerosol particles and radioactive substances, Ross. Gosud. Gidrometeorol. Univ., St. Petersburg, 2011 (in Russian)
[9] A. J.G. Baumgaertner, J. P. Thayer, R. R. Neely, G. Lucas, “Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations”, J. Geophys. Res.: Atmospheres, 118:16 (2013), 9221–9232 | DOI
[10] S. S. Davydenko, E. A. Mareev, T. C. Marshall, M. Stolzenburg, “On the calculation of electric fields and currents of mesoscale convective systems”, J. Geophys. Res., 109:D11 (2004), 1–10
[11] G. M. Lucas, A. J.G. Baumgaertner, J. P. Thayer, “A global electric circuit model within a community climate model”, J. Geophys. Res.: Atmospheres, 120:23 (2015), 12054–12066 | DOI
[12] V. Bayona, N. Flyer, G. M. Lucas, A. J.G. Baumgaertner, “A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)”, Geoscientific Model Development, 8:10 (2015), 3007–3020 | DOI
[13] N. A. Denisova, A. V. Kalinin, “Influence of the choice of boundary conditions on the distribution of the electric field in models of the global electric circuit”, Radiophys. Quant. Electronics, 61:10 (2019), 741–751 | DOI
[14] A. V. Chernov, “Differentiation of a functional in the problem of parametric coefficient optimization in the global electric circuit equation”, Comput. Math. Math. Phys., 56:9 (2016), 1565–1579 | DOI | Zbl
[15] A. V. Chernov, “Differentiation of the functional in a parametric optimization problem for the higher coefficient of an elliptic equation”, Diff. Equat., 51:4 (2015), 548–557 | DOI | Zbl
[16] A. V. Chernov, “Differentiation of the functional in a parametric optimization problem for a coefficient of a semilinear elliptic equation”, Diff. Equat., 53:4 (2017), 551–562 | DOI | Zbl
[17] A. V. Chernov, “On the uniqueness of solution to the inverse problem of determination parameters in the senior coefficient and the righthand side of an elliptic equation”, Dalnevostochnyi Matem. Zhurn., 16:1 (2016), 96–110 (in Russian) | Zbl
[18] A. V. Chernov, “On uniqueness of solutions to inverse problem of atmospheric electricity”, Vestnik Ross. Univ. Matem., 25:129 (2020), 85–99 (in Russian)
[19] A. V. Chernov, “Preservation of the solvability of a semilinear global electric circuit equation”, Comput. Math. Math. Phys., 58:12 (2018), 2095–2111 | DOI | Zbl
[20] A. V. Chernov, “Total preservation of the solvability of the semilinear global electric circuit equation”, Differ. Equats., 54:8 (2018), 1073–1082 | DOI | Zbl
[21] F. V. Lubyshev, A. R. Manapova, “Difference approximations of optimization problems for semilinear elliptic equations in a convex domain with controls in the coefficients multiplying the highest derivatives”, Comput. Math. Math. Phys., 53:1 (2013), 8–33 | DOI | Zbl
[22] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | Zbl
[23] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | Zbl
[24] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | Zbl
[25] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1965 | Zbl
[26] A. V. Chernov, “On total preservation of global solvability of differential operator equation”, Prikl. Matem. Vorp. Upravl., 2 (2017), 94–111 (in Russian)
[27] A. V. Chernov, “Local convexity conditions for reachability tubes of distributed control systems”, Russ. Math., 58:11 (2014), 60–73 | DOI | Zbl
[28] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | Zbl