@article{UFA_2021_13_3_a1,
author = {M. A. Artemov and Yu. N. Babkina},
title = {Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain},
journal = {Ufa mathematical journal},
pages = {17--26},
year = {2021},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a1/}
}
TY - JOUR AU - M. A. Artemov AU - Yu. N. Babkina TI - Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain JO - Ufa mathematical journal PY - 2021 SP - 17 EP - 26 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a1/ LA - en ID - UFA_2021_13_3_a1 ER -
%0 Journal Article %A M. A. Artemov %A Yu. N. Babkina %T Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain %J Ufa mathematical journal %D 2021 %P 17-26 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a1/ %G en %F UFA_2021_13_3_a1
M. A. Artemov; Yu. N. Babkina. Dirichlet boundary value problem for equations describing flows of a nonlinear viscoelastic fluid in a bounded domain. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 17-26. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a1/
[1] V. A. Pavlovsky, “On theoretical description of weak aqueous solutions of polymers”, Dokl. AN SSSR, 200:4 (1971), 809–812 (in Russian)
[2] A. P. Oskolkov, “On the global solvability of a boundary value problem for a system of third order occuring in studying of motion of viscous fluid”, Zap. Nauchn. Sem. LOMI, 27, 1972, 145–160 (in Russian) | Zbl
[3] A. P. Oskolkov, “Uniqueness and global solvability for boundary-value problems for the equations of motion of water solutions of polymers”, Zap. Nauchn. Sem. LOMI, 38, 1973, 98–136 (in Russian) | Zbl
[4] A. P. Oskolkov, “Unsteady flows of viscoelastic fluids”, Proc. Steklov Inst. Math., 159 (1984), 105–134 | Zbl | Zbl
[5] G. A. Sviridyuk, “On a model of the dynamics of a weakly compressible viscoelastic fluid”, Russian Math. (Iz. VUZ), 38:1 (1994), 59–68 | Zbl
[6] A. V. Zvyagin, “Investigation of the solvability of a stationary boundary problem for the mathematical model of a low concentrated aqueous polymer solutions”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 1 (2011), 147–156 (in Russian) | Zbl
[7] E. S. Baranovskii, “Global solutions for a model of polymeric flows with wall slip”, Math. Meth. Appl. Sci., 40:14 (2017), 5035–5043 | DOI | Zbl
[8] O. A. Ladyzhenskaya, “On the global unique solvability of some two-dimensional problems for the water solutions of polymers”, J. Math. Sci., 99:1 (2000), 888–897 | DOI
[9] E. S. Baranovskii, “Flows of a polymer fluid in domain with impermeable boundaries”, Comput. Math. Math. Phys., 54:10 (2014), 1589–1596 | DOI | Zbl
[10] M. A. Artemov, E. S. Baranovskii, “Boundary value problems for motion equations of polymeric fluids with nonlinear slip condition on solid walls”, Trudy Inst. Mat. Mekh. UrO RAN, 21, no. 1, 2015, 14–24
[11] E. S. Baranovskii, “Mixed initial-boundary value problem for equations of motion of Kelvin-Voigt fluids”, Comput. Math. Math. Phys., 56:7 (2016), 1363–1371 | DOI | Zbl
[12] M. A. Artemov, E. S. Baranovskii, “Solvability of the Boussinesq approximation for water polymer solutions”, Mathematics, 7:7 (2019), 611 | DOI
[13] V. G. Litvinov, “Motion of a nonlinear-viscous fluid”, Nauka, M., 1982 (in Russian)
[14] A. C. Eringen, Nonlocal Continuum Field Theories, Springer Verlag, New York, 2002 | Zbl
[15] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Amer. Math. Soc., Providence, RI, 1994 | Zbl
[16] F. Carapau, “One-dimensional viscoelastic fluid model where viscosity and normal stress coefficients depend on the shear rate”, Nonlinear Anal. Real World Appl., 11:5 (2010), 4342–4354 | DOI | Zbl
[17] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Elsevier, Amsterdam, 2003
[18] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publ. Co., Amsterdam, 1979 | Zbl
[19] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Sci. Publ., New York, 1969 | Zbl