Hardy type inequalities involving gradient of distance function
Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove several new Hardy type inequalities in Euclidean domains; these inequalities involve the gradient of the distance function from a point to the boundary of the domain. For test functions we consider improved inequalities in form proposed by Balinsky and Evans for convex domains. Namely, in Hardy type inequalities, instead of the gradient of the test function, one takes the scalar product of the gradients of the test function and of the distance from a point to the boundary of a given domain. In the present paper, integral Hardy type inequalities are studied in non-convex $n$-dimensional domains having a finite inradius. We prove three new Hardy type $L_p$-inequalities in an improved form with explicit estimates for the constants depending on the dimension of the Euclidean space $n\geq 2$, the inradius of the domain and two parameters $p\geq 1$, $s \geq n$. Our proofs are based on three key ingredients. The first of them is related with an approximation and a special partition of the domain, in particular, we employ the approximation of the domain by subsets formed by finitely many cubes with sides parallel to the coordinate planes. The second ingredient is the representation of the domain as a countable union of subdomains with piece-wise smooth boundaries and applying a new theorem by the author on convergence of the gradients of the distance functions for these subdomains. Moreover, we prove three new Hardy type inequalities on a finite interval, which are employed in justifying the inequalities in multi-dimensional domains.
Keywords: Hardy type inequality, inradius, gradient of distance function.
@article{UFA_2021_13_3_a0,
     author = {F. G. Avkhadiev},
     title = {Hardy type inequalities involving gradient of distance function},
     journal = {Ufa mathematical journal},
     pages = {3--16},
     year = {2021},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Hardy type inequalities involving gradient of distance function
JO  - Ufa mathematical journal
PY  - 2021
SP  - 3
EP  - 16
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a0/
LA  - en
ID  - UFA_2021_13_3_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Hardy type inequalities involving gradient of distance function
%J Ufa mathematical journal
%D 2021
%P 3-16
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a0/
%G en
%F UFA_2021_13_3_a0
F. G. Avkhadiev. Hardy type inequalities involving gradient of distance function. Ufa mathematical journal, Tome 13 (2021) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2021_13_3_a0/

[1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934

[2] A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Springer, Heidelberg, 2015

[3] F. G. Avkhadiev, Conformally invariany inequalities, Kazan University, Kazan, 2020 (in Russian)

[4] H. Rademacher, “Uber partielle und totale Differenzierbarkeit I”, Math. Ann., 89:4 (1919), 340–359 | DOI

[5] T. S. Motzkin, “Sur quelques propriétés charactéristiques des ensembles convexes”, Atti Real. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie VI, 21 (1935), 562–567

[6] C. Mantegazza, A. C. Mennucci, “Hamilton-Jacobi equations and distance functions on Riemannian manifolds”, Appl. Math. Optim., 47 (2003), 1–25 | DOI

[7] F. G. Avkhadiev, “Properties and applications of the distance functions on open sets of the Euclidean space”, Russian Math. (Iz. VUZ), 64:4 (2020), 78–81 | Zbl

[8] F. G. Avkhadiev, “A Strong Form of Hardy Type Inequalities on Domains of the Euclidean Space”, Lobachevskii J. Math., 41:11 (2020), 2120–2135 | DOI | Zbl

[9] A. A. Balinsky, W. D. Evans, “Some recent results on Hardy-type inequalities”, Appl. Math. Inf. Sci., 4:2 (2010), 191–208 | Zbl

[10] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255 (2006), 2–12 | DOI | Zbl

[11] F. G. Avkhadiev, A. Laptev, “Hardy Inequalities for Nonconvex Domains”, Around Research of Vladimir Maz'ya I, International Mathematical Series, 11, Springer, 2010, 1–12 | DOI | Zbl

[12] F. G. Avkhadiev, K. J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 723–736 | DOI | Zbl

[13] F. G. Avkhadiev, R. G. Nasibullin, “Hardy-type inequalities in arbitrary domains with finite inner radius”, Siberian Math. J., 55:2 (2014), 191–200 | DOI | Zbl

[14] F. G. Avkhadiev, I. K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Math. (Iz. VUZ), 58:2 (2014), 58–61 | DOI | Zbl

[15] F. G. Avkhadiev, “Sharp Hardy constants for annuli”, J. Math. Anal. Appl., 466 (2018), 936–951 | DOI | Zbl

[16] F. G. Avkhadiev, R. V. Makarov, “Hardy Type Inequalities on Domains with Convex Complement and Uncertainty Principle of Heisenberg”, Lobachevskii J. Math., 40:9 (2019), 1250–1259 | DOI | Zbl