Mots-clés : Abel equation
@article{UFA_2021_13_2_a8,
author = {B. I. Suleimanov and A. M. Shavlukov},
title = {Integrable {Abel} equation and asymptotics},
journal = {Ufa mathematical journal},
pages = {99--106},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/}
}
B. I. Suleimanov; A. M. Shavlukov. Integrable Abel equation and asymptotics. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 99-106. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/
[1] L. A. Kalyakin, “Asymptotic transitions from discrete to continuous models”, Theor. Math. Phys., 76:3 (1988), 891–894 | DOI | MR | Zbl
[2] R. I. Yamilov, “On classification of discrete evolution equations”, Uspekhi Matem. Nauk, 38:6(234) (1983), 155–156 (in Russian)
[3] D. Levi, P. Winternitz, R. I. Yamilov, “Symmetries of the continuous and discrete Krichever-Novikov equation”, SIGMA, 7 (2011), 097 | MR | Zbl
[4] R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup-Kupershmidt equation”, Ufa Math. J., 9:3 (2017), 158–164 | MR | Zbl
[5] R. N. Garifullin, R. I. Yamilov, “On the integrability of a lattice equation with two continuum limits”, Journal of Mathematical Sciences, 252:2 (2021), 283–289 | DOI | Zbl
[6] V. E. Zakharov, “Dispersionless limit of integrable systems in 2+1 dimensions”, Singular Limits of Dispersive Waves, eds. Ercolani N. M. et al., Plenum Press, NY, 1994, 165–174 | DOI | MR | Zbl
[7] E. V. Ferapontov, K. R. Khusnutdinova, “Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability”, J. Math. Phys., 45:6 (2004), 2365–2377 | DOI | MR | Zbl
[8] E. V. Ferapontov, K. R. Khusnutdinova, “On integrability of (2+1)-dimensional quasilinear systems”, Comm. Math. Phys., 48 (2004), 187–206 | DOI | MR
[9] E. V. Ferapontov, B. Kruglikov, “Dispersionless integrable systems in 3D and Einstein-Weyl geometry”, J. Diff. Geom., 97 (2014), 215–254 | MR | Zbl
[10] B. A. Dubrovin, S. P. Novikov, “Hydrodinamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl
[11] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math. Dokl., 31 (1985), 488–491 | MR | Zbl
[12] S. P. Tsarev, “The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419 | DOI | MR | MR | Zbl
[13] I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations”, Funct. Anal. Appl., 22:3 (1988), 200–213 | DOI | MR | Zbl
[14] G. V. Potemin, “Algebro-geometric construction of self-similar solutions of the Whitham equations”, Russ. Math. Surv., 43:5 (1988), 252–253 | DOI | MR
[15] A. V. Gurevich, L. P. Pitaevskii, “Breaking a simple wave in the kinetics of a Rarefied Plasma”, Sov. Phys. JETP, 33:6 (1971), 1159–1167 | MR
[16] A. V. Gurevich, L. P. Pitaevskii, “Non stationare structure of collisionless shock wave”, Sov. Phys. JETP, 38:2 (1974), 291–297
[17] A. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, Amer. Math. Soc., Providence, RI, 2006 | MR
[18] A. B. Shabat, “On the Korteweg-de Vries equation”, Sov. Math. Dokl., 14 (1973), 1266–1270 | MR | Zbl
[19] A. B. Shabat, Transformation operators and nonlinear equations, Habiliation thesis, Bashkir State Univ., Ufa, 1974 (in Russian)
[20] A. V. Kitaev, “Turning points of linear systems and double asymptotics of the Painlevé transcendents”, J. Math. Sci., 73:4 (1995), 446–459 | DOI | MR
[21] B. I. Suleimanov, “The second Painlevé equation in a problem concerning nonlinear effects near caustics”, J. Math. Sci., 73:4 (1995), 482–493 | DOI | MR
[22] B. I. Suleimanov, “A “nonlinear” generalization of special functions of wave catastrophes described by double integrals”, Math. Notes, 52:5–6 (1992), 1146–1149 | DOI | MR
[23] B. I. Suleimanov, I. T. Habibullin, “Symmetries of the Kadomtsev-Petviashvili equation, the isomonodromic deformations, and “nonlinear” generalizations of special functions of wave catastrophes”, Theor. Math. Phys., 97:2 (1993), 1250–1258 | DOI | MR
[24] B. I. Suleimanov, “Solution of the Korteweg-de Vries equation which arises near the breaking point in problems with a slight dispersion”, JETP Lett., 58:11 (1993), 849–854 | MR
[25] B. I. Suleimanov, “Influence of a weak nonlinearity on the high-frequency asymptotics in caustic rearrangements”, Theor. Math. Phys., 98:2 (1994), 132–138 | DOI | Zbl
[26] B. I. Suleimanov, “Onset of nondissipative shock waves and the “nonperturbative” quantum theory of gravitattion”, J. Exper. Theor. Phys., 78:5 (1994), 583–587 | MR
[27] A. V. Kitaev, “Caustics in 1+1 integrable systems”, J. Math. Phys., 35:2 (1994), 2934–2954 | DOI | MR | Zbl
[28] V. R. Kudashev, KdV shock-like waves as invariant solutions of KdV equaton symmetry, 1994, arXiv: patt-sol/9404002 | MR
[29] V. R. Kudashev, B. I. Suleimanov, “Characteristic features of some typical spontaneous intensivity collapse processes in unstable media”, JETP Lett., 62:4 (1995), 382–388
[30] V. Kudashev, B. Suleimanov, “A soft mechanism for generation the dissipationless shock waves”, Phys. Letters A, 221:3–4 (1996), 204–208 | DOI
[31] V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optics approximation”, Theor. Math. Phys., 118:3 (1999), 325–332 | DOI | MR | Zbl
[32] V. R. Kudashev, B. I. Suleimanov, “The effect of small dissipation on the onset of one-dimensional shock waves”, J. Appl. Math. Mech., 65:3 (2001), 441–451 | DOI | MR | Zbl
[33] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Comm. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl
[34] T. Claeys, M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl
[35] T. Grava, C. Klein, “Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painlevé-II equation”, Proc. of the Royal Society A, 464:2091 (2008), 733–757 | DOI | MR | Zbl
[36] B. Dubrovin, T. Grava, C. Klein, “On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronqu-ee Solution to the Painlevé-I Equation”, J. Nonl. Science, 19:1 (2009), 57–94 | DOI | MR | Zbl
[37] R. Garifullin, B. Suleimanov, N. Tarkhanov, “Phase Shift in the Whitham Zone for the Gurevich-Pitaevskii Special Solution of the Korteweg-de Vries Equation”, Phys. Lett. A, 374:13–14 (2010), 1420–1424 | DOI | MR | Zbl
[38] R. N. Garifullin, B. I. Suleimanov, “From weak discontinues to nondissipative shock waves”, J. Exper. Theor. Phys., 110:1 (2010), 133–146 | DOI | MR
[39] T. Claeys, “Asymptotics for a special solutions to the second member of the Painleve I hierarhy”, J. Phys. A, 43:43 (2010), 434012, 18 pp. | DOI | MR | Zbl
[40] T. Claeys, T. Grava, “Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit”, SIAM J. Math. Anal., 42:5 (2010), 2132–2154 | DOI | MR | Zbl
[41] T. Claeys, “Pole-free solutions of the first Painlevé Hierarchy and non-generic critical behavior for the KdV equation”, Physica D: Nonlinear Phenomena, 241:23 (2011), 2226–2236 | MR
[42] T. Grava, A. Kapaev, C. Klein, “On the Tritronquée Solutions of $P_I^2$”, Constr. Approx., 41:3 (2015), 425–466 | DOI | MR | Zbl
[43] B. Dubrovin, M. Elaeva, “On the critical behavior in nonlinear evolutionary PDEs with small viscosity”, Russian J. Math. Phys., 19:4 (2012), 449–460 | DOI | MR | Zbl
[44] R. N. Garifullin, “Phase shift for the common solution of KdV and fifth order differential equation”, Ufa Math. J., 4:2 (2012), 52–61 | MR | MR
[45] M. Bertola, A. Tovbis, “Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I”, Comm. Pure and Appl. Math., 66 (2013), 678–752 | DOI | MR | Zbl
[46] R. N. Garifullin, “On simultaneous solution of the KdV equation and a fifth-order differential equation”, Ufa Math. J., 8:4 (2016), 80–86 | DOI | MR | Zbl
[47] B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Lett., 6:6 (2017), 400–405 | DOI
[48] B. I. Suleimanov, “On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations”, Itogi Nauki Tekh. Ser. Sovrem. Matem. Pril. Temat. Obz., 163, VINITI RAN, 2019, 81–95 (in Russian) | MR
[49] D. Bilman, L. Ling, P. D. Miller, “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy”, Duke Math. J., 169 (2020), 671–760 | DOI | MR | Zbl
[50] V. E. Adler, “Nonautonomous symmetries of the KdV equation and step-like solutions”, J. of Nonlinear Math. Phys., 27:3 (2020), 478–493 | DOI | MR | Zbl
[51] E. Bresin, E. Marinari, G. Parisi, “A nonperturbative ambiguty free solution of a string model”, Phys. Lett. B, 242:1 (1990), 35–38 | DOI | MR
[52] M. Douglas, N. Seiberg, S. Shenker, “Flow and unstability in quantum gravity”, Phys. Lett. B, 244:3–4 (1990), 381–386 | DOI | MR
[53] V. R. Kudashev, S. E. Sharapov, “Inheritance of KdV symmetries under Whitham averaging and hydrodynamic symmetries of the Witham equations”, Theor. Math. Phys., 87:1 (1991), 358–363 | DOI | MR | Zbl
[54] B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207 | DOI | MR | Zbl