Integrable Abel equation and asymptotics
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 99-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide a general solution to a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary part of its higher non-autonomous symmetry. This symmetry is determined by a linear combination of the first higher autonomous symmetry of the Korteweg-de Vries equation and of its classical Galileo symmetry. This general solution depends on an arbitrary parameter. By the implicit function theorem, locally it is determined by the first integral explicitly written in terms of hypergeometric functions. A particular case of the general solution defines self-similar solutions of the Whitham equations, found earlier by G.V. Potemin in 1988. In the well-known works by A.V. Gurevich and L.P. Pitaevsky in early 1970s, it was established that these solutions of the Whitham equations describe the origination in the leading term of non-damping oscillating waves in a wide range of problems with a small dispersion. The result of this work supports once again an empirical law saying that under various passages to the limits, integrable equations can produce only integrable, in certain sense, equations. We propose a general conjecture: integrable ordinary differential equations similar to that considered in the present paper should also arise in describing the asymptotics at large times for other symmetry solutions to evolution equations admitting the application of the inverse scattering transform method.
Keywords: integrability, Korteweg-de Vries equation, asymptotics.
Mots-clés : Abel equation
@article{UFA_2021_13_2_a8,
     author = {B. I. Suleimanov and A. M. Shavlukov},
     title = {Integrable {Abel} equation and asymptotics},
     journal = {Ufa mathematical journal},
     pages = {99--106},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/}
}
TY  - JOUR
AU  - B. I. Suleimanov
AU  - A. M. Shavlukov
TI  - Integrable Abel equation and asymptotics
JO  - Ufa mathematical journal
PY  - 2021
SP  - 99
EP  - 106
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/
LA  - en
ID  - UFA_2021_13_2_a8
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%A A. M. Shavlukov
%T Integrable Abel equation and asymptotics
%J Ufa mathematical journal
%D 2021
%P 99-106
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/
%G en
%F UFA_2021_13_2_a8
B. I. Suleimanov; A. M. Shavlukov. Integrable Abel equation and asymptotics. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 99-106. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a8/

[1] L. A. Kalyakin, “Asymptotic transitions from discrete to continuous models”, Theor. Math. Phys., 76:3 (1988), 891–894 | DOI | MR | Zbl

[2] R. I. Yamilov, “On classification of discrete evolution equations”, Uspekhi Matem. Nauk, 38:6(234) (1983), 155–156 (in Russian)

[3] D. Levi, P. Winternitz, R. I. Yamilov, “Symmetries of the continuous and discrete Krichever-Novikov equation”, SIGMA, 7 (2011), 097 | MR | Zbl

[4] R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup-Kupershmidt equation”, Ufa Math. J., 9:3 (2017), 158–164 | MR | Zbl

[5] R. N. Garifullin, R. I. Yamilov, “On the integrability of a lattice equation with two continuum limits”, Journal of Mathematical Sciences, 252:2 (2021), 283–289 | DOI | Zbl

[6] V. E. Zakharov, “Dispersionless limit of integrable systems in 2+1 dimensions”, Singular Limits of Dispersive Waves, eds. Ercolani N. M. et al., Plenum Press, NY, 1994, 165–174 | DOI | MR | Zbl

[7] E. V. Ferapontov, K. R. Khusnutdinova, “Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability”, J. Math. Phys., 45:6 (2004), 2365–2377 | DOI | MR | Zbl

[8] E. V. Ferapontov, K. R. Khusnutdinova, “On integrability of (2+1)-dimensional quasilinear systems”, Comm. Math. Phys., 48 (2004), 187–206 | DOI | MR

[9] E. V. Ferapontov, B. Kruglikov, “Dispersionless integrable systems in 3D and Einstein-Weyl geometry”, J. Diff. Geom., 97 (2014), 215–254 | MR | Zbl

[10] B. A. Dubrovin, S. P. Novikov, “Hydrodinamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl

[11] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math. Dokl., 31 (1985), 488–491 | MR | Zbl

[12] S. P. Tsarev, “The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419 | DOI | MR | MR | Zbl

[13] I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations”, Funct. Anal. Appl., 22:3 (1988), 200–213 | DOI | MR | Zbl

[14] G. V. Potemin, “Algebro-geometric construction of self-similar solutions of the Whitham equations”, Russ. Math. Surv., 43:5 (1988), 252–253 | DOI | MR

[15] A. V. Gurevich, L. P. Pitaevskii, “Breaking a simple wave in the kinetics of a Rarefied Plasma”, Sov. Phys. JETP, 33:6 (1971), 1159–1167 | MR

[16] A. V. Gurevich, L. P. Pitaevskii, “Non stationare structure of collisionless shock wave”, Sov. Phys. JETP, 38:2 (1974), 291–297

[17] A. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, Amer. Math. Soc., Providence, RI, 2006 | MR

[18] A. B. Shabat, “On the Korteweg-de Vries equation”, Sov. Math. Dokl., 14 (1973), 1266–1270 | MR | Zbl

[19] A. B. Shabat, Transformation operators and nonlinear equations, Habiliation thesis, Bashkir State Univ., Ufa, 1974 (in Russian)

[20] A. V. Kitaev, “Turning points of linear systems and double asymptotics of the Painlevé transcendents”, J. Math. Sci., 73:4 (1995), 446–459 | DOI | MR

[21] B. I. Suleimanov, “The second Painlevé equation in a problem concerning nonlinear effects near caustics”, J. Math. Sci., 73:4 (1995), 482–493 | DOI | MR

[22] B. I. Suleimanov, “A “nonlinear” generalization of special functions of wave catastrophes described by double integrals”, Math. Notes, 52:5–6 (1992), 1146–1149 | DOI | MR

[23] B. I. Suleimanov, I. T. Habibullin, “Symmetries of the Kadomtsev-Petviashvili equation, the isomonodromic deformations, and “nonlinear” generalizations of special functions of wave catastrophes”, Theor. Math. Phys., 97:2 (1993), 1250–1258 | DOI | MR

[24] B. I. Suleimanov, “Solution of the Korteweg-de Vries equation which arises near the breaking point in problems with a slight dispersion”, JETP Lett., 58:11 (1993), 849–854 | MR

[25] B. I. Suleimanov, “Influence of a weak nonlinearity on the high-frequency asymptotics in caustic rearrangements”, Theor. Math. Phys., 98:2 (1994), 132–138 | DOI | Zbl

[26] B. I. Suleimanov, “Onset of nondissipative shock waves and the “nonperturbative” quantum theory of gravitattion”, J. Exper. Theor. Phys., 78:5 (1994), 583–587 | MR

[27] A. V. Kitaev, “Caustics in 1+1 integrable systems”, J. Math. Phys., 35:2 (1994), 2934–2954 | DOI | MR | Zbl

[28] V. R. Kudashev, KdV shock-like waves as invariant solutions of KdV equaton symmetry, 1994, arXiv: patt-sol/9404002 | MR

[29] V. R. Kudashev, B. I. Suleimanov, “Characteristic features of some typical spontaneous intensivity collapse processes in unstable media”, JETP Lett., 62:4 (1995), 382–388

[30] V. Kudashev, B. Suleimanov, “A soft mechanism for generation the dissipationless shock waves”, Phys. Letters A, 221:3–4 (1996), 204–208 | DOI

[31] V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optics approximation”, Theor. Math. Phys., 118:3 (1999), 325–332 | DOI | MR | Zbl

[32] V. R. Kudashev, B. I. Suleimanov, “The effect of small dissipation on the onset of one-dimensional shock waves”, J. Appl. Math. Mech., 65:3 (2001), 441–451 | DOI | MR | Zbl

[33] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Comm. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl

[34] T. Claeys, M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl

[35] T. Grava, C. Klein, “Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painlevé-II equation”, Proc. of the Royal Society A, 464:2091 (2008), 733–757 | DOI | MR | Zbl

[36] B. Dubrovin, T. Grava, C. Klein, “On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronqu-ee Solution to the Painlevé-I Equation”, J. Nonl. Science, 19:1 (2009), 57–94 | DOI | MR | Zbl

[37] R. Garifullin, B. Suleimanov, N. Tarkhanov, “Phase Shift in the Whitham Zone for the Gurevich-Pitaevskii Special Solution of the Korteweg-de Vries Equation”, Phys. Lett. A, 374:13–14 (2010), 1420–1424 | DOI | MR | Zbl

[38] R. N. Garifullin, B. I. Suleimanov, “From weak discontinues to nondissipative shock waves”, J. Exper. Theor. Phys., 110:1 (2010), 133–146 | DOI | MR

[39] T. Claeys, “Asymptotics for a special solutions to the second member of the Painleve I hierarhy”, J. Phys. A, 43:43 (2010), 434012, 18 pp. | DOI | MR | Zbl

[40] T. Claeys, T. Grava, “Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit”, SIAM J. Math. Anal., 42:5 (2010), 2132–2154 | DOI | MR | Zbl

[41] T. Claeys, “Pole-free solutions of the first Painlevé Hierarchy and non-generic critical behavior for the KdV equation”, Physica D: Nonlinear Phenomena, 241:23 (2011), 2226–2236 | MR

[42] T. Grava, A. Kapaev, C. Klein, “On the Tritronquée Solutions of $P_I^2$”, Constr. Approx., 41:3 (2015), 425–466 | DOI | MR | Zbl

[43] B. Dubrovin, M. Elaeva, “On the critical behavior in nonlinear evolutionary PDEs with small viscosity”, Russian J. Math. Phys., 19:4 (2012), 449–460 | DOI | MR | Zbl

[44] R. N. Garifullin, “Phase shift for the common solution of KdV and fifth order differential equation”, Ufa Math. J., 4:2 (2012), 52–61 | MR | MR

[45] M. Bertola, A. Tovbis, “Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I”, Comm. Pure and Appl. Math., 66 (2013), 678–752 | DOI | MR | Zbl

[46] R. N. Garifullin, “On simultaneous solution of the KdV equation and a fifth-order differential equation”, Ufa Math. J., 8:4 (2016), 80–86 | DOI | MR | Zbl

[47] B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Lett., 6:6 (2017), 400–405 | DOI

[48] B. I. Suleimanov, “On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations”, Itogi Nauki Tekh. Ser. Sovrem. Matem. Pril. Temat. Obz., 163, VINITI RAN, 2019, 81–95 (in Russian) | MR

[49] D. Bilman, L. Ling, P. D. Miller, “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy”, Duke Math. J., 169 (2020), 671–760 | DOI | MR | Zbl

[50] V. E. Adler, “Nonautonomous symmetries of the KdV equation and step-like solutions”, J. of Nonlinear Math. Phys., 27:3 (2020), 478–493 | DOI | MR | Zbl

[51] E. Bresin, E. Marinari, G. Parisi, “A nonperturbative ambiguty free solution of a string model”, Phys. Lett. B, 242:1 (1990), 35–38 | DOI | MR

[52] M. Douglas, N. Seiberg, S. Shenker, “Flow and unstability in quantum gravity”, Phys. Lett. B, 244:3–4 (1990), 381–386 | DOI | MR

[53] V. R. Kudashev, S. E. Sharapov, “Inheritance of KdV symmetries under Whitham averaging and hydrodynamic symmetries of the Witham equations”, Theor. Math. Phys., 87:1 (1991), 358–363 | DOI | MR | Zbl

[54] B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207 | DOI | MR | Zbl