Mots-clés : nonlocal equation
@article{UFA_2021_13_2_a7,
author = {A. O. Smirnov and V. B. Matveev},
title = {Finite-gap solutions of nonlocal equations in {Ablowitz-Kaup-Newell-Segur} hierarchy},
journal = {Ufa mathematical journal},
pages = {81--98},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a7/}
}
A. O. Smirnov; V. B. Matveev. Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 81-98. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a7/
[1] V. Konotop, J. Yang, D. Zezulin, “Nonlinear waves in PT-symmetric systems”, Rev. Modern Phys., 88 (2016), 035002 | DOI
[2] D. Christodoulides, J. Yang (eds.), Parity-time symmetry and its applications, Springer Tracts in Modern Physics, 280, Springer, 2018 | DOI
[3] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Let., 110 (2013), 064105 | DOI
[4] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete PT symmetric model”, Phys. Rev. E, 90:3 (2014), 032912 | DOI | MR
[5] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR | Zbl
[6] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR | Zbl
[7] T. P. Horikis, M. J. Ablowitz, “Rogue waves in nonlocal media”, Phys. Rev. E, 95:4 (2017), 042211 | DOI | MR
[8] M. J. Ablowitz, B. F. Feng, X. D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal Sine-Gordon/Sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 2018 | MR
[9] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “The $N$-wave equations with PT symmetry”, Theor. Math. Phys., 188:3 (2016), 1305–1321 | DOI | MR | Zbl
[10] D. Y. Liu, W. R. Sun, “Rational solutions for the nonlocal sixth-order nonlinear Schrödinger equation”, Appl. Math. Lett., 84 (2018), 63–69 | DOI | MR | Zbl
[11] H. Q. Zhang, M. Gao, “Rational soliton solutions in the parity-time-symmetric nonlocal coupled nonlinear Schrödinger equations”, Comm. Nonlin. Sci. and Num. Sim., 63 (2018), 253–260 | DOI | MR | Zbl
[12] Z. X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrodinger equation”, Commun Nonlinear Sci. Numer. Simulat., 62 (2018), 480–488 | DOI | MR | Zbl
[13] Y. Cao, B. Malomed, J. He, “Two (2+1)-dimensional integrable nonlocal nonlinear Schrodinger equations: Breather, rational and semi-rational solutions”, Chaos, Solitons and Fractals, 114 (2018), 99–107 | DOI | MR | Zbl
[14] B. Yang, Y. Chen, “Reductions of Darboux transformations for the PT-symmetric nonlocal Davey-Stewartson equations”, Appl. Math. Lett., 82 (2018), 43–49 | DOI | MR | Zbl
[15] Z. J. Yang, S. M. Zhang, X. L. Li, Z. G. Pang, “Variable sinh-Gaussian solitons in nonlocal nonlinear Schrodinger equation”, Appl. Math. Lett., 82 (2018), 64–70 | DOI | MR | Zbl
[16] K. Manikandan, Priya N. Vishnu, M. Senthilvelan, R. Sankaranarayanan, “Deformation of dark solitons in a PT-invariant variable coefficients nonlocal nonlinear Schrodinger equation”, Chaos, 28:8 (2018), 083103 | DOI | MR | Zbl
[17] J. Rao, Y. Zhang, A. Fokas, J. He, “Rogue waves of the nonlocal Davey-Stewartson I equation”, Nonlinearity, 31:9 (2018), 4090–4107 | DOI | MR | Zbl
[18] X. Y. Tang, Z. F. Liang, X. Z. Hao, “Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system”, Commun Nonlinear Sci. Numer. Simulat., 60 (2018), 62–71 | DOI | MR | Zbl
[19] K. Chen, X. Deng, S. Lou, D. J. Zhang, “Solutions of nonlocal equations reduced from the AKNS hierarchy”, Stud. Appl. Math., 141:1 (2018), 113–141 | DOI | MR | Zbl
[20] W. Liu, X. Li, “General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions”, Nonlinear Dynamics, 93:2 (2018), 721–731 | DOI | MR | Zbl
[21] P. Vinayagam, R. Radha, U. Al Khawaja, L. Ling, “New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrodinger equations with four wave mixing”, Commun Nonlinear Sci. Numer. Simulat., 59 (2018), 387–395 | DOI | MR | Zbl
[22] Y. Cao, J. Rao, D. Mihalache, J. He, “Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas system”, Appl. Math. Lett., 80 (2018), 27–34 | DOI | MR | Zbl
[23] C. Qian, J. Rao, D. Mihalache, J. He, “Rational and semi-rational solutions of the $y$-nonlocal Davey-Stewartson I equation”, Computers and Mathematics with Applications, 75:9 (2018), 3317–3330 | DOI | MR | Zbl
[24] M. Gurses, A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota method”, Commun Nonlinear Sci. Numer. Simulat., 67 (2019), 427–448 | DOI | MR | Zbl
[25] Q. Zhang, Y. Zhang, R. Ye, “Exact solutions of nonlocal Fokas-Lenells equation”, Appl. Math. Lett., 98 (2019), 336–343 | DOI | MR | Zbl
[26] V. S. Gerdjikov, “On the integrability of Ablowitz-Ladik models with local and nonlocal reductions”, Journal of Physics: Conference Series, 1205:1 (2019), 012015 | DOI
[27] B. Yang, J. Yang, “Rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109 (2019), 945–973 | DOI | MR | Zbl
[28] J. Yang, “General $n$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383 (2019), 328–337 | DOI | MR
[29] B. Yang, J. Yang, On general rogue waves in the parity-time-symmetric nonlinear Schrodinger equation, 2019, 19 pp., arXiv: 1903.06203 | MR
[30] Y. Yang, T. Suzuki, X. Cheng, “Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation”, Appl. Math. Lett., 99 (2020), 105998 | DOI | MR | Zbl
[31] A. O. Smirnov, E. E. Aman, “The simplest oscillating solutions of nonlocal nonlinear models”, Journal of Physics: Conference Series, 1399:2 (2019), 022020 | DOI
[32] A. O. Smirnov, E. E. Aman, “One-phase elliptic solutions of the nonlocal nonlinear equations from AKNS hierarchy and their spectral curves”, Journal of Physics: Conference Series, 1515:3 (2020), 032080 | DOI
[33] V. B. Matveev, A. O. Smirnov, “Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: general analysis and simplest examples”, Theor. Math. Phys., 204:3 (2020), 1154–1165 | DOI | MR | Zbl
[34] V. B. Matveev, A. O. Smirnov, “AKNS hierarchy, MRW solutions, $P_n$ breathers, beyond”, J. Math. Phys., 59:9 (2018), 091419 | DOI | MR | Zbl
[35] V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci., 242:5 (2019), 722–741 | DOI | MR | Zbl
[36] A. R. Its, V. P. Kotlyarov, “On a class of solutions of the nonlinear Schrödinger equation”, Dokl. Akad. Nauk Ukrain. SSR, Ser. A, 11 (1976), 965–968 (Russian) | MR
[37] V. P. Kotlyarov, Periodic problem for the nonlinear Schrödinger equation, 2014, 14 pp., arXiv: 1401.4445 | Zbl
[38] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, 1994 | MR
[39] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Studies in Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[40] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:9 (1988), 483–488 | DOI
[41] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain”, J. Math. Phys, 33 (1992), 1807–1816 | DOI | MR | Zbl
[42] M. Daniel, K. Porsezian, M. Lakshmanan, “On the integrable models of the higher order water wave equation”, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR
[43] A.O Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves”, Theor. Math. Phys., 173:1 (2012), 1403–1416 | DOI | MR | Zbl
[44] A.O Smirnov, “Periodic two-phase "rogue waves"”, Math. Notes, 94:6 (2013), 897–907 | DOI | MR | Zbl
[45] A.O Smirnov, S. G. Matveenko, S. K. Semenov, E. G. Semenova, “Three-phase freak waves”, SIGMA, 11 (2015), 032 | MR | Zbl
[46] B. A. Dubrovin, “Theta functions, non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl
[47] J. D. Fay, Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, 1973 | DOI | MR | Zbl
[48] A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903 | MR | Zbl
[49] H. F. Baker, Abel's theorem and the allied theory including the theory of theta functions, Cambridge, 1897 | MR
[50] D. Mumford, Tata lectures on theta, v. I, Progress in Math., 28, Birkhäuser Boston Inc., Boston, MA, 1983 | DOI | MR | Zbl
[51] D. Mumford, Tata lectures on theta, v. II, Progress in Math., 43, Birkhäuser Boston Inc., Boston, MA, 1984 | MR | Zbl
[52] A. O. Smirnov, “A matrix analogue of the Appell theorem and reduction of multidimensional Riemann theta-functions”, Math. USSR Sb., 61:2 (1988), 379–388 | DOI | MR | Zbl