Discrete Riemann-Hilbert problem and interpolation of entire functions
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 70-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two problems in complex analysis which were developed in Ufa in 1970s years. These are a Riemann-Hilbert problem about jump of a piecewise-analytic function on a contour and a problem of interpolation of entire functions on a countable set in the complex plane. A progress in recent years led to comprehension that they have much common in subject. The first problem arrives as an equivalent of the inverse scattering problem applied for integrating nonlinear differential equations of mathematical physics. The second problem is a natural generalization of Lagrange formula for polynomial with given values on a finite set of points. It is shown that both problems can be united by generalization of the Riemann-Hilbert problem on a case of “discrete contour”, where a “jump” of analytic function takes place. This formulation of the discrete matrix Riemann problem can be applied now for various problems of exactly solvable difference equations as well as estimates of spectrum of random matrices. In the paper we show how the discrete matrix Riemann-Hilbert problem provides a way to integrate nonlinear difference equations such as a discrete Painlevé equation. On the other hand, it is shown how assignment of residues to meromorphic matrix functions is effectively reduced to an interpolation problem of entire functions on a countable set in $\mathbb{C}$ with the only accumulation point at infinity. Other application of discrete matrix Riemann-Hilbert problem includes calculation of Fredholm determinants emerging in combinatorics and group representation theory.
Keywords: Riemann-Hilbert problem, inverse scattering problem, entire functions, canonical product, Fredholm determinant, asymptotic expansions.
Mots-clés : interpolation, discrete Painlevé equations
@article{UFA_2021_13_2_a6,
     author = {V. Yu. Novokshenov},
     title = {Discrete {Riemann-Hilbert} problem and interpolation of entire functions},
     journal = {Ufa mathematical journal},
     pages = {70--80},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Discrete Riemann-Hilbert problem and interpolation of entire functions
JO  - Ufa mathematical journal
PY  - 2021
SP  - 70
EP  - 80
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/
LA  - en
ID  - UFA_2021_13_2_a6
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Discrete Riemann-Hilbert problem and interpolation of entire functions
%J Ufa mathematical journal
%D 2021
%P 70-80
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/
%G en
%F UFA_2021_13_2_a6
V. Yu. Novokshenov. Discrete Riemann-Hilbert problem and interpolation of entire functions. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 70-80. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill Book Co., New York, 1953 | MR

[2] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Plenum Publ. Corp., New York, 1984 | MR | MR | Zbl

[3] I. I. Ibragimov, Interpolation methods for functions and some of their applications, Nauka, M., 1971 (in Russian)

[4] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR

[5] A. F. Leont'ev, “On interpolation in class of entire functions of finite order”, Dokl. AN SSSR, 61:5 (1948), 785–787 (in Russian) | Zbl

[6] V. Yu. Novokshenov, “Discrete integrable equations and special functions”, Ufa Math. J., 9:3 (2017), 118–130 | DOI | MR | Zbl

[7] A. B. Shabat, “Inverse-scattering problem for a system of differential equations”, Funct. Anal. Appl., 9:3 (1975), 244–247 | DOI | MR

[8] A. B. Shabat, “An inverse scattering problem”, Diff. Equats., 15:10 (1980), 1299–1307 | MR | Zbl | Zbl

[9] A. Borodin, A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37:4 (2000), 386–396 | DOI | MR | Zbl

[10] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 1–54 | DOI | MR

[11] A. Borodin, “Isomonodromy transformations of linear systems of difference equations”, Ann. Math., 160:3 (2004), 1141–1182 | DOI | MR

[12] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhauser Verlag, Basel, 1981 | MR | Zbl

[13] P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes, New York Univ., 1999 | MR

[14] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, Rhode Island, 2006 | DOI | MR

[15] F. D. Gakhov, Boundary value problems, Dover Publications, New York, 1990 | MR | Zbl

[16] B. Grammaticos, F. W. Nijhof, A. Ramani, “Discrete Painlevé equations”, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, 413–516 | MR | Zbl

[17] A. R. Its, “The Riemann-Hilbert Problem and Integrable Systems”, Notices of the Amer. Math. Soc., 50:11 (2003), 1389–1400 | MR | Zbl

[18] H. Sakai, “Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl

[19] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl