Mots-clés : interpolation, discrete Painlevé equations
@article{UFA_2021_13_2_a6,
author = {V. Yu. Novokshenov},
title = {Discrete {Riemann-Hilbert} problem and interpolation of entire functions},
journal = {Ufa mathematical journal},
pages = {70--80},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/}
}
V. Yu. Novokshenov. Discrete Riemann-Hilbert problem and interpolation of entire functions. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 70-80. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a6/
[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill Book Co., New York, 1953 | MR
[2] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Plenum Publ. Corp., New York, 1984 | MR | MR | Zbl
[3] I. I. Ibragimov, Interpolation methods for functions and some of their applications, Nauka, M., 1971 (in Russian)
[4] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR
[5] A. F. Leont'ev, “On interpolation in class of entire functions of finite order”, Dokl. AN SSSR, 61:5 (1948), 785–787 (in Russian) | Zbl
[6] V. Yu. Novokshenov, “Discrete integrable equations and special functions”, Ufa Math. J., 9:3 (2017), 118–130 | DOI | MR | Zbl
[7] A. B. Shabat, “Inverse-scattering problem for a system of differential equations”, Funct. Anal. Appl., 9:3 (1975), 244–247 | DOI | MR
[8] A. B. Shabat, “An inverse scattering problem”, Diff. Equats., 15:10 (1980), 1299–1307 | MR | Zbl | Zbl
[9] A. Borodin, A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37:4 (2000), 386–396 | DOI | MR | Zbl
[10] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 1–54 | DOI | MR
[11] A. Borodin, “Isomonodromy transformations of linear systems of difference equations”, Ann. Math., 160:3 (2004), 1141–1182 | DOI | MR
[12] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhauser Verlag, Basel, 1981 | MR | Zbl
[13] P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes, New York Univ., 1999 | MR
[14] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, Rhode Island, 2006 | DOI | MR
[15] F. D. Gakhov, Boundary value problems, Dover Publications, New York, 1990 | MR | Zbl
[16] B. Grammaticos, F. W. Nijhof, A. Ramani, “Discrete Painlevé equations”, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, 413–516 | MR | Zbl
[17] A. R. Its, “The Riemann-Hilbert Problem and Integrable Systems”, Notices of the Amer. Math. Soc., 50:11 (2003), 1389–1400 | MR | Zbl
[18] H. Sakai, “Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl
[19] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl