Mots-clés : Liouville equation
@article{UFA_2021_13_2_a5,
author = {D. V. Millionshchikov and S. V. Smirnov},
title = {Characteristic algebras and integrable exponential systems},
journal = {Ufa mathematical journal},
pages = {41--69},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a5/}
}
D. V. Millionshchikov; S. V. Smirnov. Characteristic algebras and integrable exponential systems. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 41-69. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a5/
[1] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Bashkir Branch of Academy of Sciences of USSR, 1981 (in Russian)
[2] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl
[3] A. N. Leznov, “On the complete integrability of a nonlinear system of partial differential equations in two-dimensional space”, Theor. Math. Phys., 42:3 (1980), 225–229 | DOI | MR | MR | Zbl | Zbl
[4] V. E. Adler, I. T. Habibullin, “Integrable boundary conditions for the Toda lattice”, J. Phys. A: Math. Gen., 28:23 (1995), 67116129 | DOI | MR
[5] B. Gürel, I. Habibullin, “Boundary conditions for two-dimensional integrable chains”, Phys. Lett. A, 233:3–4 (1997), 68–72 | DOI | MR | Zbl
[6] I. T. Habibullin, “Truncations of Toda chains and the reduction problem”, Theor. Math. Phys., 143:1 (2005), 515–528 | DOI | MR | MR | Zbl
[7] R. S. Ward, “Discrete Toda field equations”, Phys. Lett. A, 199:1–2 (1995), 45–48 | DOI | MR | Zbl
[8] A. Doliwa, “Geometric discretisation of the Toda system”, Phys. Lett. A, 234:3 (1997), 187–192 | DOI | MR | Zbl
[9] I. T. Habibullin, “$C$-series discrete chains”, Theor. Math. Phys., 146:2 (2006), 170–182 | DOI | MR | Zbl
[10] S. V. Smirnov, “Semidiscrete Toda lattices”, Theor. Math. Phys., 172:3 (2012), 1217–1231 | DOI | MR | Zbl
[11] I. Habibullin, K. Zheltukhin, M. Yangubaeva, “Cartan matrices and integrable lattice Toda field equations”, J. Phys. A: Math. Theor., 44:46 (2011), 465202 | DOI | MR | Zbl
[12] R. Garifullin, I. Habibullin, M. Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete time-space”, SIGMA, 8 (2012), 062 | MR | Zbl
[13] S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theor. Math. Phys., 182:2 (2015), 189–210 | DOI | MR | Zbl
[14] D. K. Demskoi, D. T. Tran, “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991 | DOI | MR | Zbl
[15] I. T. Habibullin, A. R. Khakimova, “Discrete exponential type systems on a quad graph, corresponding to the affine Lie algebras $A^{(1)}_{N-1}$”, J. Phys. A: Math. Theor., 52:36 (2019), 365202 | DOI | MR
[16] I. Habibullin, A. Khakimova, “Integrable boundary conditions for the Hirota-Miwa equation and Lie algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413 | DOI | MR | Zbl
[17] I. T. Habibullin, M. N. Kuznetsova, A. U. Sakieva, “Integrability conditions for two-dimensional Toda-like equations”, J. Phys. A: Math. Theor., 53:39 (2020), 395203 | DOI | MR
[18] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse., 1 (1899), 31–78 ; 439–464 | DOI | MR | Zbl
[19] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Equations of Liouville type”, Sov. Math. Dokl., 20 (1979), 1183–1187 | MR | Zbl
[20] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023 | MR | Zbl
[21] A. V. Zhiber, R. D. Murtazina, “On the characteristic Lie algebras for equations $u_{xy}=f(u,u_x)$”, J. Math. Sci., 151:4 (2008), 3112–3122 | DOI | MR | Zbl
[22] I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl
[23] A. V. Zhiber, O. S. Kostrigina, “Characteristic algebras of nonlinear hyperbolic systems of equations”, J. Sib. Fed. Univ. Math. Phys., 3:2 (2010), 173–184 (in Russian) | Zbl
[24] N. A. Zheltukhina, A. U. Sakieva, I. T. Habibullin, “Characteristic Lie algebra and Darboux integrable discrete chains”, Ufimskji Matem. Zhurn., 2:4 (2010), 39–51 (in Russian) | MR | Zbl
[25] A. U. Sakieva, “Characteristic Lie ring of the Zhiber-Shabat-Tzitzeica equation”, Ufimskij Matem. Zhurn., 4:3 (2012), 155–160 (in Russian) | MR | Zbl
[26] M. Gürses, A. V. Zhiber, I. T. Habibullin, “Characteristic Lie rings of differential equations”, Ufimskji Matem. Zhurn., 4:1 (2012), 53–62 (in Russian) | MR
[27] A. V. Zhiber, S. N. Kamaeva, “Construction of exact solution to sine-Gordon equation on the base of its characteristic Lie ring”, Ufa Math. J., 8:3 (2016), 49–57 | DOI | MR | Zbl
[28] I. Habibullin, M. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA, 13 (2017), 073 | MR | Zbl
[29] M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105 | DOI | MR | Zbl
[30] I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie-Rinehart algebras”, Theor. Math. Phys., 203:1 (2020), 569–581 | DOI | MR | Zbl
[31] A. B. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, Equations of mathematical physics. Nonlinear integrable equations, Yurait, M., 2018 (in Russian)
[32] A. V. Zhiber, A. B. Shabat, “Klein-Gordon equations with a nontrivial group”, Sov. Phys. Dokl., 24:8 (1979), 608–609 | MR
[33] D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russ. Math. Surv., 72:6 (2017), 1174–1176 | DOI | MR | Zbl
[34] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein-Gordon PDE”, Algebras and Representation Theory, 21:5 (2018), 1037–1069 | DOI | MR | Zbl
[35] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108:2 (1963), 195–222 | DOI | MR | Zbl
[36] V. M. Buchstaber, D. V. Leykin, “Polynomial Lie algebras”, Func. Anal. Appl., 36:4 (2002), 267–280 | DOI | MR | Zbl
[37] D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314 | DOI | MR | Zbl
[38] V. E. Adler, S. Ya. Startsev, “Discrete analogues of the Liouville equation”, Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | MR | Zbl
[39] V. G. Kac, “Simple irreducible graded Lie algebras of finite growth”, Math. USSR-Izv., 2:6 (1968), 1271–1311 | DOI | MR
[40] O. Mathieu, “Classification of simple graded Lie algebras of finite growth”, Invent. Math., 108 (1990), 455–519 | DOI | MR
[41] G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, AMS, Providence, R.I., 2000 | MR | Zbl
[42] I. M. Gelfand, A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie”, Inst. Hautes Etudes Sci. Publ. Math., 31 (1966), 5–19 | DOI | MR
[43] J. Riordan, Combinatorial identities, John Wiley and Sons, New York, 1968 | MR | MR | Zbl