General solutions of some linear equations with variable coefficients
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we find general solutions to some classes of linear wave equations with variable coefficients. Such equations describe the oscillations of rods, acoustic waves, and also some models of gas dynamics are reduced to these equations. To construct general solutions, we employ special types of Euler-Darboux transformations, namely, Levi type transformations. These transformations are first order differential substitutions. For constructing each transformation, we need to solve two linear second order ordinary differential equations. The solutions of one of these equations are determined by the solutions of the other equations by means of a differential substitution and Liouville formula. In the general case, it is not easy to solve these ordinary differential equations. However, it is possible to provide some formula for the superposition of the transformation of Levy type. Starting with a classical wave equation with constant coefficients and employing the found transformations, we can construct infinite series of equations possessing explicit general solutions. By means of Matveev method we obtain limiting forms of iterated transformations. We provide a series of particular examples of the equations possessing general solutions.
Keywords: linear equations with variable coefficients, general solutions, limiting Levi transformations.
@article{UFA_2021_13_2_a4,
     author = {O. V. Kaptsov and M. M. Mirzaokhmedov},
     title = {General solutions of some linear equations with variable coefficients},
     journal = {Ufa mathematical journal},
     pages = {33--40},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/}
}
TY  - JOUR
AU  - O. V. Kaptsov
AU  - M. M. Mirzaokhmedov
TI  - General solutions of some linear equations with variable coefficients
JO  - Ufa mathematical journal
PY  - 2021
SP  - 33
EP  - 40
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/
LA  - en
ID  - UFA_2021_13_2_a4
ER  - 
%0 Journal Article
%A O. V. Kaptsov
%A M. M. Mirzaokhmedov
%T General solutions of some linear equations with variable coefficients
%J Ufa mathematical journal
%D 2021
%P 33-40
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/
%G en
%F UFA_2021_13_2_a4
O. V. Kaptsov; M. M. Mirzaokhmedov. General solutions of some linear equations with variable coefficients. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 33-40. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/

[1] L.M. Brekhovskikh, Waves in layered media, Academic Press, New York, 1980 | MR | Zbl

[2] Zh. Darbu, Lektsii po obschei teorii poverkhnostei, v. 2, Institut kompyuternykh issledovanii, M.–Izhevsk, 2013; G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1, Gauthier-Villars, Paris, 1887 ; v. 2, 1889 | MR

[3] O.V. Kaptsov, Methods for integrating partial differential equations, Fizmatlit, M., 2009 (in Russian)

[4] L.V. Ovsyannikov, Lectures on the fundamentals of gas dynamics, Nauka, M., 1981 | MR | Zbl

[5] A.D. Polyanin, V.F. Zaitsev, Handbook of nonlinear partial differential equations, CRC Press, Boca Raton, FL, 2011 | MR | Zbl

[6] L. Euler, Principles of integral calculus, v. III, B.G. Teubner, Leipzig, 1914 | Zbl

[7] L. Eisenhart, Transformations of surfaces, Chelsea Publ., Princeton, 1962 | MR

[8] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Theory and their Applications to Geometry, Springer, New York, 2005 | MR | Zbl

[9] E.S. Hammond, “Periodic conjugate nets”, Ann. Math., 22:4 (1921), 238–261 | DOI | MR | Zbl

[10] V.B. Matveev., “Generalized Wronskian formula for solutions of the KdV equations: first applications”, Phys. Lett. A, 166:3 (1992), 205–208 | DOI | MR

[11] V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer-Verlag, New York, 1991 | MR | Zbl

[12] C. Rogers, W.K. Schief, Backlund and Darboux Transformations Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002 | MR | Zbl