@article{UFA_2021_13_2_a4,
author = {O. V. Kaptsov and M. M. Mirzaokhmedov},
title = {General solutions of some linear equations with variable coefficients},
journal = {Ufa mathematical journal},
pages = {33--40},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/}
}
O. V. Kaptsov; M. M. Mirzaokhmedov. General solutions of some linear equations with variable coefficients. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 33-40. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a4/
[1] L.M. Brekhovskikh, Waves in layered media, Academic Press, New York, 1980 | MR | Zbl
[2] Zh. Darbu, Lektsii po obschei teorii poverkhnostei, v. 2, Institut kompyuternykh issledovanii, M.–Izhevsk, 2013; G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1, Gauthier-Villars, Paris, 1887 ; v. 2, 1889 | MR
[3] O.V. Kaptsov, Methods for integrating partial differential equations, Fizmatlit, M., 2009 (in Russian)
[4] L.V. Ovsyannikov, Lectures on the fundamentals of gas dynamics, Nauka, M., 1981 | MR | Zbl
[5] A.D. Polyanin, V.F. Zaitsev, Handbook of nonlinear partial differential equations, CRC Press, Boca Raton, FL, 2011 | MR | Zbl
[6] L. Euler, Principles of integral calculus, v. III, B.G. Teubner, Leipzig, 1914 | Zbl
[7] L. Eisenhart, Transformations of surfaces, Chelsea Publ., Princeton, 1962 | MR
[8] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Theory and their Applications to Geometry, Springer, New York, 2005 | MR | Zbl
[9] E.S. Hammond, “Periodic conjugate nets”, Ann. Math., 22:4 (1921), 238–261 | DOI | MR | Zbl
[10] V.B. Matveev., “Generalized Wronskian formula for solutions of the KdV equations: first applications”, Phys. Lett. A, 166:3 (1992), 205–208 | DOI | MR
[11] V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer-Verlag, New York, 1991 | MR | Zbl
[12] C. Rogers, W.K. Schief, Backlund and Darboux Transformations Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002 | MR | Zbl