Integrals and characteristic Lie rings of semi-discrete systems of equations
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to studying systems of semi-discrete equations $\bar{r}_{n+1,x} = \bar{h}(x,n, \bar{r}_n, \bar{r}_{n+1}, \bar{r}_{n,x})$ within the framework of an approach based on the concept of a characteristic Lie ring. Here $\bar{r}_n = (r^1_n, r^2_n, \ldots, r^N_n)$, $\bar{h} = (h^1, h^2, \ldots, h^N)$, $n \in \mathbb{Z}$. Among integrable nonlinear partial differential equations and systems, we find Darboux integrable nonlinear hyperbolic equations and systems. A feature of such equations is the existence of integrals along each characteristic direction, the so-called $x$- and $y$-integrals. This allows us to reduce the integration of a partial differential equation to integrating a system of ordinary differential equations. Darboux integrable equations and systems can be efficiently studied and classified by means of characteristic Lie rings. Papers by Leznov, Smirnov, Shabat, Yamilov underlie an algebraic approach for studying nonlinear hyperbolic systems. Currently, the algebraic approach is extended to semi-discrete and discrete equations. In this paper, we prove that the system has $N$ essentially independent $x$-integrals if and only if the characteristic Lie ring corresponding to a continuous characteristic direction is finite-dimensional.
Keywords: semi-discrete system of equations, characteristic ring, $x$-integral, Darboux integrable system.
@article{UFA_2021_13_2_a3,
     author = {A. V. Zhiber and M. N. Kuznetsova},
     title = {Integrals and characteristic {Lie} rings of semi-discrete systems of equations},
     journal = {Ufa mathematical journal},
     pages = {22--32},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - M. N. Kuznetsova
TI  - Integrals and characteristic Lie rings of semi-discrete systems of equations
JO  - Ufa mathematical journal
PY  - 2021
SP  - 22
EP  - 32
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/
LA  - en
ID  - UFA_2021_13_2_a3
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A M. N. Kuznetsova
%T Integrals and characteristic Lie rings of semi-discrete systems of equations
%J Ufa mathematical journal
%D 2021
%P 22-32
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/
%G en
%F UFA_2021_13_2_a3
A. V. Zhiber; M. N. Kuznetsova. Integrals and characteristic Lie rings of semi-discrete systems of equations. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 22-32. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/

[1] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | MR | Zbl

[2] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Bashkir Branch of Academy of Sciences of USSR, 1981 (in Russian)

[3] I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J. Math. Phys., 52:9 (2011), 093507 | DOI | MR | Zbl

[4] A. V. Zhiber, O. S. Kostrigina, “Exactly solvable models of wave processes”, Vestnik UGATU, 7:25 (2007), 83–89 (in Russian)

[5] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702 | DOI | MR | Zbl

[6] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x} = t_x + d(t, t_1)$”, J. Math. Phys., 50:10 (2009), 102710 | DOI | MR | Zbl

[7] A. V. Zhiber, A. M. Gurieva, “On characteristic equation of a quasi-linear hyperbolic system of equations”, Vestnik UGATU, 6:2 (2005), 26–34 (in Russian)

[8] A. V. Zhiber, O. S. Kostrigina, “Characteristic algebras of nonlinear hyperbolic systems of equations”, Zhurn. SFU. Ser. Matem. Fiz., 3:2 (2010), 173–184 | Zbl

[9] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, arXiv: 2102.07352 | DOI