@article{UFA_2021_13_2_a3,
author = {A. V. Zhiber and M. N. Kuznetsova},
title = {Integrals and characteristic {Lie} rings of semi-discrete systems of equations},
journal = {Ufa mathematical journal},
pages = {22--32},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/}
}
A. V. Zhiber; M. N. Kuznetsova. Integrals and characteristic Lie rings of semi-discrete systems of equations. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 22-32. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a3/
[1] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | MR | Zbl
[2] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Bashkir Branch of Academy of Sciences of USSR, 1981 (in Russian)
[3] I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J. Math. Phys., 52:9 (2011), 093507 | DOI | MR | Zbl
[4] A. V. Zhiber, O. S. Kostrigina, “Exactly solvable models of wave processes”, Vestnik UGATU, 7:25 (2007), 83–89 (in Russian)
[5] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702 | DOI | MR | Zbl
[6] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x} = t_x + d(t, t_1)$”, J. Math. Phys., 50:10 (2009), 102710 | DOI | MR | Zbl
[7] A. V. Zhiber, A. M. Gurieva, “On characteristic equation of a quasi-linear hyperbolic system of equations”, Vestnik UGATU, 6:2 (2005), 26–34 (in Russian)
[8] A. V. Zhiber, O. S. Kostrigina, “Characteristic algebras of nonlinear hyperbolic systems of equations”, Zhurn. SFU. Ser. Matem. Fiz., 3:2 (2010), 173–184 | Zbl
[9] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, arXiv: 2102.07352 | DOI