On integrability of semi-discrete Tzitzeica equation
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 15-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider a semi-discrete version of Tzitzeica equation $$\frac{du_{n+1}}{dx}=\frac{du_{n}}{dx}+(e^{-2u_n} +e^{-2u_{n+1}})+\sqrt{e^{2u_n}+e^{2u_{n+1}}},$$ which was found in a recent paper [R.N. Garifullin and I.T. Habibullin 2021 J. Phys. A: Math. Theor. 54 205201]. It was shown that this equation possessed generalized symmetries along the discrete and continuous directions. These generalized symmetries are equations of Sawada-Kotera equation type and of discere Sawada-Kotera equation type. In this work we construct the Lax pair for this equation and for its generalized symmetries. The found Lax pair is written out in terms of $3\times 3$ matrices and this indicates the integrability of the found equations. To solve this problem, we employ the known relation between one of the generalized symmetries with a well-studied Kaup-Kupershmidt equation. The found Lax pairs can be employed in further studies of this equation, namely, for finding its conservations laws, the recursion operators and wide classes of solutions. Moreover, we write out two Lax representations in the form of scalar operators. The first representation is written in terms of the powers of the differentiation operators with respect to the continuous variable $x$, while the other is written via the powers of the operator of the shift along the discrete variable $n$.
Keywords: integrability, Lax pairs, generalized symmetries
Mots-clés : Tzitzeica equation.
@article{UFA_2021_13_2_a2,
     author = {R. N. Garifullin},
     title = {On integrability of semi-discrete {Tzitzeica} equation},
     journal = {Ufa mathematical journal},
     pages = {15--21},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/}
}
TY  - JOUR
AU  - R. N. Garifullin
TI  - On integrability of semi-discrete Tzitzeica equation
JO  - Ufa mathematical journal
PY  - 2021
SP  - 15
EP  - 21
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/
LA  - en
ID  - UFA_2021_13_2_a2
ER  - 
%0 Journal Article
%A R. N. Garifullin
%T On integrability of semi-discrete Tzitzeica equation
%J Ufa mathematical journal
%D 2021
%P 15-21
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/
%G en
%F UFA_2021_13_2_a2
R. N. Garifullin. On integrability of semi-discrete Tzitzeica equation. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 15-21. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/

[1] R. N. Garifullin, I. T. Habibullin, “Generalized symmetries and integrability conditions for hyperbolic type semi-discrete equations”, J. Phys. A: Math. Theor., 54:20 (2021), 205201 | DOI | MR

[2] G. Tzitzeica, “Sur une nouvelle classe de surfaces”, Rendiconti del Circolo Matematico di Palermo, 25:1 (1907), 180–187 | DOI

[3] A. V. Zhiber, A. B. Shabat, “Klein-Gordon equations with a nontrivial group”, Soviet Phys. Dokl., 24 (1979), 607–609 | MR

[4] A. P. Veselov, A. B. Shabat, “Dressing chains and spectral theory of the Schr-odinger operator”, Funct. Anal. Appl., 27:2 (1993), 81–96 | DOI | MR | Zbl

[5] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541 | DOI | MR | Zbl

[6] R. I. Yamilov, “Classification of discrete evolution equations”, Uspekhi Matem. Nauk, 38:6 (1983), 155–156 (in Russian)

[7] R. I. Yamilov, “Invertible changes of variables generated by Backlund transformations”, Theor. Math. Phys., 85:3 (1990), 1269–1275 | DOI | MR | Zbl

[8] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations with a constant separant”, Ufa Math. J., 4:3 (2012), 104–152 | MR | Zbl

[9] D. J. Kaup, “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62:3 (1980), 189–216 | DOI | MR | Zbl

[10] A. P. Fordy, J. Gibbons, “Factorization of operators I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl

[11] R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup-Kupershmidt equation”, Ufa Math. J., 9:3 (2017), 158–164 | MR | Zbl