Mots-clés : Tzitzeica equation.
@article{UFA_2021_13_2_a2,
author = {R. N. Garifullin},
title = {On integrability of semi-discrete {Tzitzeica} equation},
journal = {Ufa mathematical journal},
pages = {15--21},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/}
}
R. N. Garifullin. On integrability of semi-discrete Tzitzeica equation. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 15-21. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a2/
[1] R. N. Garifullin, I. T. Habibullin, “Generalized symmetries and integrability conditions for hyperbolic type semi-discrete equations”, J. Phys. A: Math. Theor., 54:20 (2021), 205201 | DOI | MR
[2] G. Tzitzeica, “Sur une nouvelle classe de surfaces”, Rendiconti del Circolo Matematico di Palermo, 25:1 (1907), 180–187 | DOI
[3] A. V. Zhiber, A. B. Shabat, “Klein-Gordon equations with a nontrivial group”, Soviet Phys. Dokl., 24 (1979), 607–609 | MR
[4] A. P. Veselov, A. B. Shabat, “Dressing chains and spectral theory of the Schr-odinger operator”, Funct. Anal. Appl., 27:2 (1993), 81–96 | DOI | MR | Zbl
[5] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541 | DOI | MR | Zbl
[6] R. I. Yamilov, “Classification of discrete evolution equations”, Uspekhi Matem. Nauk, 38:6 (1983), 155–156 (in Russian)
[7] R. I. Yamilov, “Invertible changes of variables generated by Backlund transformations”, Theor. Math. Phys., 85:3 (1990), 1269–1275 | DOI | MR | Zbl
[8] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations with a constant separant”, Ufa Math. J., 4:3 (2012), 104–152 | MR | Zbl
[9] D. J. Kaup, “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62:3 (1980), 189–216 | DOI | MR | Zbl
[10] A. P. Fordy, J. Gibbons, “Factorization of operators I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl
[11] R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup-Kupershmidt equation”, Ufa Math. J., 9:3 (2017), 158–164 | MR | Zbl