@article{UFA_2021_13_2_a14,
author = {K. Zheltukhin and N. Zheltukhina},
title = {On discretization of {Darboux} {Integrable} {Systems} admitting second-order integrals},
journal = {Ufa mathematical journal},
pages = {170--186},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/}
}
K. Zheltukhin; N. Zheltukhina. On discretization of Darboux Integrable Systems admitting second-order integrals. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 170-186. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/
[1] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 2, Gautier Villas, Paris, 1915 | MR
[2] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Bashkir Branch of Academy of Sciences of USSR, Ufa, 1981 (in Russian)
[3] Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl | Zbl
[4] V. V. Sokolov, A. V. Zhiber, “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208:4–6 (1995), 303–308 | DOI | MR | Zbl
[5] Dokl. Math., 52:1 (1995), 128–130 | MR | Zbl
[6] Russ. Math. Surv., 56:1(337) (2001), 61–101 | DOI | DOI | MR | Zbl
[7] A. V. Zhiber, R. D. Murtazina, “On the characteristic Lie algebras for the equations $u_{xy}=f(u,u_x)$”, J. Math. Sci, 151:4 (2008), 3112–3122 | DOI | MR | Zbl
[8] O. S. Kostrigina, A. V. Zhiber, “Darboux-integrable two-component nonlinear hyperbolic systems of equations”, J. Math. Phys., 52:3 (2011), 033503 | DOI | MR | Zbl
[9] R. D. Murtazina, “Nonlinear hyperbolic equations with characteristic ring of dimension 3”, Ufimskij Matem. Zhurn., 3:4 (2011), 113–118 (in Russian) | MR
[10] I. M. Anderson, M. E. Fels, “The Cauchy problem for Darboux integrable systems and non-linear d'Alembert formulas”, SIGMA, 9 (2013), 017 | MR | Zbl
[11] I. M. Anderson, M. E. Fels, P. J. Vassiliou, “On Darboux integrability”, Symmetry and perturbation theory, Proc. 6th Int. Conf. (Italy, 2007), World Scientific, Hackensack, 2008, 13–20 | MR | Zbl
[12] Ufa Math. J., 4:3 (2012), 17–85 | MR | Zbl
[13] I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and the classification of semi-discrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl
[14] Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | MR | Zbl
[15] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023 | MR | Zbl
[16] I. T. Habibullin, K. Zheltukhin, M. Yangubaeva, “Cartan matrices and integrable lattice Toda field equations”, J. Phys. A, 44:46 (2011), 465202 | DOI | MR | Zbl
[17] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “On some algebraic properties of semi-discrete hyperbolic type equations”, Turkish J. Math., 32:3 (2008), 277–292 | MR | Zbl
[18] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702 | DOI | MR | Zbl
[19] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t1)$”, J. Math. Phys., 50:10 (2009), 102710 | DOI | MR | Zbl
[20] I. T. Habibullin, N. Zheltukhina, A. Sakieva, “On Darboux-integrable semi-discrete chain”, J. Phys. A, 43:43 (2010), 434017 | DOI | MR | Zbl
[21] I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J. Math. Phys., 52:9 (2011), 093507 | DOI | MR | Zbl
[22] I. T. Habibullin, E. V. Gudkova, “Classification of integrable discrete Klein-Gordon models”, Physica Scripta, 83:4 (2010), 045003 | DOI
[23] Theor. Math. Phys., 172:3 (2012), 1217–1231 | DOI | DOI | MR | Zbl
[24] I. T. Habibullin, N. Zheltukhina, “Discretization of Liouville type nonautonomous equations”, J. Nonl. Math. Phys., 23:4 (2016), 620–642 | DOI | MR | Zbl
[25] K. Zheltukhin, N. Zheltukhina, “On the discretization of Laine equations”, J. Nonl. Math. Phys., 25:1 (2018), 166–177 | DOI | MR | Zbl
[26] K. Zheltukhin, N. Zheltukhina, “On the discretization of Darboux integrable Systems”, J. Nonl. Math. Phys., 27:4 (2020), 616–632 | DOI | MR | Zbl