On discretization of Darboux Integrable Systems admitting second-order integrals
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 170-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discretization problem for hyperbolic Darboux integrable systems. In particular, we discretize continuous systems admitting $x$- and $y$-integrals of the first and second order. Such continuous systems were classified by Zhyber and Kostrigina. In the present paper, continuous systems are discretized with respect to one of continuous variables and the resulting semi-discrete system is required to be also Darboux integrable. To obtain such a discretization, we take $x$- or $y$-integrals of a given continuous system and look for a semi-discrete systems admitting the chosen integrals as $n$-integrals. This method was proposed by Habibullin. For all considered systems and corresponding sets of integrals we were able to find such semi-discrete systems. In general, the obtained semi-discrete systems are given in terms of solutions of some first order quasilinear differential systems. For all such first order quasilinear differential systems we find implicit solutions. New examples of semi-discrete Darboux integrable systems are obtained. Also for each of considered continuous systems we determine a corresponding semi-discrete system that gives the original system in the continuum limit.
Keywords: Darboux integrability, discretization.
@article{UFA_2021_13_2_a14,
     author = {K. Zheltukhin and N. Zheltukhina},
     title = {On discretization of {Darboux} {Integrable} {Systems} admitting second-order integrals},
     journal = {Ufa mathematical journal},
     pages = {170--186},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/}
}
TY  - JOUR
AU  - K. Zheltukhin
AU  - N. Zheltukhina
TI  - On discretization of Darboux Integrable Systems admitting second-order integrals
JO  - Ufa mathematical journal
PY  - 2021
SP  - 170
EP  - 186
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/
LA  - en
ID  - UFA_2021_13_2_a14
ER  - 
%0 Journal Article
%A K. Zheltukhin
%A N. Zheltukhina
%T On discretization of Darboux Integrable Systems admitting second-order integrals
%J Ufa mathematical journal
%D 2021
%P 170-186
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/
%G en
%F UFA_2021_13_2_a14
K. Zheltukhin; N. Zheltukhina. On discretization of Darboux Integrable Systems admitting second-order integrals. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 170-186. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a14/

[1] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 2, Gautier Villas, Paris, 1915 | MR

[2] A. B. Shabat, R. I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Bashkir Branch of Academy of Sciences of USSR, Ufa, 1981 (in Russian)

[3] Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl | Zbl

[4] V. V. Sokolov, A. V. Zhiber, “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208:4–6 (1995), 303–308 | DOI | MR | Zbl

[5] Dokl. Math., 52:1 (1995), 128–130 | MR | Zbl

[6] Russ. Math. Surv., 56:1(337) (2001), 61–101 | DOI | DOI | MR | Zbl

[7] A. V. Zhiber, R. D. Murtazina, “On the characteristic Lie algebras for the equations $u_{xy}=f(u,u_x)$”, J. Math. Sci, 151:4 (2008), 3112–3122 | DOI | MR | Zbl

[8] O. S. Kostrigina, A. V. Zhiber, “Darboux-integrable two-component nonlinear hyperbolic systems of equations”, J. Math. Phys., 52:3 (2011), 033503 | DOI | MR | Zbl

[9] R. D. Murtazina, “Nonlinear hyperbolic equations with characteristic ring of dimension 3”, Ufimskij Matem. Zhurn., 3:4 (2011), 113–118 (in Russian) | MR

[10] I. M. Anderson, M. E. Fels, “The Cauchy problem for Darboux integrable systems and non-linear d'Alembert formulas”, SIGMA, 9 (2013), 017 | MR | Zbl

[11] I. M. Anderson, M. E. Fels, P. J. Vassiliou, “On Darboux integrability”, Symmetry and perturbation theory, Proc. 6th Int. Conf. (Italy, 2007), World Scientific, Hackensack, 2008, 13–20 | MR | Zbl

[12] Ufa Math. J., 4:3 (2012), 17–85 | MR | Zbl

[13] I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and the classification of semi-discrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl

[14] Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | MR | Zbl

[15] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023 | MR | Zbl

[16] I. T. Habibullin, K. Zheltukhin, M. Yangubaeva, “Cartan matrices and integrable lattice Toda field equations”, J. Phys. A, 44:46 (2011), 465202 | DOI | MR | Zbl

[17] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “On some algebraic properties of semi-discrete hyperbolic type equations”, Turkish J. Math., 32:3 (2008), 277–292 | MR | Zbl

[18] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702 | DOI | MR | Zbl

[19] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t1)$”, J. Math. Phys., 50:10 (2009), 102710 | DOI | MR | Zbl

[20] I. T. Habibullin, N. Zheltukhina, A. Sakieva, “On Darboux-integrable semi-discrete chain”, J. Phys. A, 43:43 (2010), 434017 | DOI | MR | Zbl

[21] I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J. Math. Phys., 52:9 (2011), 093507 | DOI | MR | Zbl

[22] I. T. Habibullin, E. V. Gudkova, “Classification of integrable discrete Klein-Gordon models”, Physica Scripta, 83:4 (2010), 045003 | DOI

[23] Theor. Math. Phys., 172:3 (2012), 1217–1231 | DOI | DOI | MR | Zbl

[24] I. T. Habibullin, N. Zheltukhina, “Discretization of Liouville type nonautonomous equations”, J. Nonl. Math. Phys., 23:4 (2016), 620–642 | DOI | MR | Zbl

[25] K. Zheltukhin, N. Zheltukhina, “On the discretization of Laine equations”, J. Nonl. Math. Phys., 25:1 (2018), 166–177 | DOI | MR | Zbl

[26] K. Zheltukhin, N. Zheltukhina, “On the discretization of Darboux integrable Systems”, J. Nonl. Math. Phys., 27:4 (2020), 616–632 | DOI | MR | Zbl