@article{UFA_2021_13_2_a13,
author = {S. Ya. Startsev},
title = {On {Darboux} non-integrability of {Hietarinta} equation},
journal = {Ufa mathematical journal},
pages = {160--169},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a13/}
}
S. Ya. Startsev. On Darboux non-integrability of Hietarinta equation. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 160-169. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a13/
[1] Funct. Anal. Appl., 43 (2009), 3–17 | DOI | MR | Zbl
[2] J. Hietarinta, “A new two-dimensional lattice model that is ‘consistent around a cube’”, J. Phys. A: Math. Gen., 37:6 (2004), L67–L73 | DOI | MR | Zbl
[3] G. Gubbiotti, C. Scimiterna, “Reconstructing a lattice equation: a non-autonomous approach to the Hietarinta equation”, SIGMA, 14 (2018), 004 | MR | Zbl
[4] S. Ya. Startsev, “Darboux integrable discrete equations possessing an autonomous first-order integral”, J. Phys. A: Math. Theor., 47:10 (2014), 105204, 16 pp. | DOI | MR | Zbl
[5] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205 | DOI | MR | Zbl
[6] Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl
[7] Ufa Math. J., 4:3 (2012), 174–180 | MR | MR
[8] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023 | MR | Zbl
[9] Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | DOI | MR | Zbl
[10] S. Ya. Startsev, “Relationships between symmetries depending on arbitrary functions and integrals of discrete equations”, J. Phys. A: Math. Theor., 50:50 (2017), 50LT01 | DOI | MR | Zbl
[11] A. Ramani, N. Joshi, B. Grammaticos, T. Tamizhmani, “Deconstructing an integrable lattice equation”, J. Phys. A: Math. Gen., 39:8 (2006), L145–L149 | DOI | MR | Zbl
[12] Theor. Math. Phys., 85:3 (1990), 1269–1275 | DOI | MR | Zbl
[13] V. V. Sokolov, S. I. Svinolupov, “On nonclassical invertible transformation of hyperbolic equations”, Eur. J. Appl. Math., 6:2 (1995), 145–156 | DOI | MR | Zbl
[14] R. I. Yamilov, “Construction scheme for discrete Miura transformation”, J. Phys. A: Math. Gen., 27:20 (1994), 6839–6851 | DOI | MR | Zbl
[15] S. Ya. Startsev, “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092 | MR | Zbl
[16] S. Ya. Startsev, “Non-Point Invertible Transformations and Integrability of Partial Difference Equations”, SIGMA, 10 (2014), 066 | MR | Zbl
[17] Russ. Math. Surv., 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl