@article{UFA_2021_13_2_a12,
author = {Decio Levi and Miguel A. Rodr{\'\i}guez},
title = {Yamilov's theorem for differential and difference equations},
journal = {Ufa mathematical journal},
pages = {152--159},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a12/}
}
Decio Levi; Miguel A. Rodríguez. Yamilov's theorem for differential and difference equations. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 152-159. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a12/
[1] M. Ablowitz, J. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl
[2] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of Integrable Equations on Quad-Graphs. The Consistency Approach”, Comm. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl
[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43:1 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl
[4] R. Boll, “Classification of 3D consistent quad-equations”, J. Nonlin. Math. Phys., 18:3 (2011), 337–365 | DOI | MR | Zbl
[5] F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable”, What is integrability?, ed. V. E. Zakharov, Springer-Verlag, Berlin, 1991, 1–61 | MR
[6] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete systems and integrability, Cambridge University Press, Cambridge, 2016 | MR | Zbl
[7] J. Hietarinta, C. Viallet, “Searching for integrable lattice maps using factorization”, J. Phys. A: Math. Theor., 40:42 (2007), 12629–12643 | DOI | MR | Zbl
[8] J. Hietarinta, D. Zhang, “Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42:40 (2009), 404006 | DOI | MR | Zbl
[9] D. Levi, R. Yamilov, “Conditions for the existence of highers symmetries of evolutionary equations on the lattice”, J. Math. Phys., 38:12 (1997), 6648–6674 | DOI | MR | Zbl
[10] D. Levi, R. I. Yamilov, “Generalized Lie symmetries for difference equations”, Symmetries and integrability of difference equations, eds. D. Levi, P. Olver, Z. Thomova, P. Winternitz, Cambridge University Press, Cambridge, 2011, 160–190 | DOI | MR | Zbl
[11] D. Levi, P. Winternitz, R. I. Yamilov, Continuous Symmetries and Integrability of Discrete Equations, Amer. Math. Soc. and the Centre de Recherches Mathématiques, 2021 (to appear)
[12] F. Nijhoff, H. Capel, “The discrete Korteweg-de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[13] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl