Mots-clés : Lax pair, Dubrovin equations
@article{UFA_2021_13_2_a11,
author = {I. T. Habibullin and A. R. Khakimova and A. O. Smirnov},
title = {Generalized invariant manifolds for integrable equations and their applications},
journal = {Ufa mathematical journal},
pages = {135--151},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/}
}
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova AU - A. O. Smirnov TI - Generalized invariant manifolds for integrable equations and their applications JO - Ufa mathematical journal PY - 2021 SP - 135 EP - 151 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/ LA - en ID - UFA_2021_13_2_a11 ER -
I. T. Habibullin; A. R. Khakimova; A. O. Smirnov. Generalized invariant manifolds for integrable equations and their applications. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 135-151. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/
[1] I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 35 pp. | DOI | MR | Zbl
[2] I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor. Math. Phys., 191:3 (2017), 793–810 | DOI | MR | Zbl
[3] I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A: Math. Theor., 51:42 (2018), 22 pp. | DOI | MR | Zbl
[4] I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theor. Math. Phys., 196:2 (2018), 1200–1216 | DOI | MR | Zbl
[5] A. R. Khakimova, “On desription of generalized invariant manifolds for nonlinear equations”, Ufa Math. J., 10:3 (2018), 106–116 | DOI | MR | Zbl
[6] E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On One Integrable Discrete System”, J. Math. Sci., 241:4 (2019), 409–422 | DOI | Zbl
[7] I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and separation of the variables for integrable chains”, J. Phys. A: Math. Theor., 53:39 (2020), 25 pp. | DOI | MR
[8] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl
[9] I. M. Krichever, “Integration of nonlinear equations by methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR | Zbl
[10] V. Kotlyarov, A. Its, Periodic problem for the nonlinear Schrödinger equation, 2014, arXiv: 1401.4445 | MR | Zbl
[11] A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg-de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470 | MR
[12] A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743 | DOI | MR | Zbl
[13] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media”, Sov. Phys. JETP, 34:1 (1972), 62 pp. | DOI | MR
[14] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc., Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl
[15] F. Demontis, “Exact solutions of the modified Korteweg-de Vries equation”, Theor. Math. Phys., 168:1 (2011), 886–897 | DOI | MR
[16] V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz-Kaup-Newell-Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theor. Math. Phys., 186:2 (2016), 156–182 | DOI | MR | Zbl