Generalized invariant manifolds for integrable equations and their applications
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 135-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we discuss the notion of the generalized invariant manifold introduced in our previous study. In the literature, the method of the differential constraints is well known as a tool for constructing particular solutions for the nonlinear partial differential equations. Its essence is in adding to a given nonlinear PDE, another much simpler, as a rule ordinary, differential equation, consistent with the given one. Then any solution of the ODE is a particular solution of the PDE as well. However the main problem is to find this consistent ODE. Our generalization is that we look for an ordinary differential equation that is consistent not with the nonlinear partial differential equation itself, but with its linearization. Such generalized invariant manifold is effectively sought. Moreover, it allows one to construct such important attributes of integrability theory as Lax pairs and recursion operators for integrable nonlinear equations. In this paper, we show that they provide a way to construct particular solutions to the equation as well.
Keywords: invariant manifold, integrable system, recursion operator, algebro-geometric solutions, spectral curves.
Mots-clés : Lax pair, Dubrovin equations
@article{UFA_2021_13_2_a11,
     author = {I. T. Habibullin and A. R. Khakimova and A. O. Smirnov},
     title = {Generalized invariant manifolds for integrable equations and their applications},
     journal = {Ufa mathematical journal},
     pages = {135--151},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
AU  - A. O. Smirnov
TI  - Generalized invariant manifolds for integrable equations and their applications
JO  - Ufa mathematical journal
PY  - 2021
SP  - 135
EP  - 151
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/
LA  - en
ID  - UFA_2021_13_2_a11
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%A A. O. Smirnov
%T Generalized invariant manifolds for integrable equations and their applications
%J Ufa mathematical journal
%D 2021
%P 135-151
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/
%G en
%F UFA_2021_13_2_a11
I. T. Habibullin; A. R. Khakimova; A. O. Smirnov. Generalized invariant manifolds for integrable equations and their applications. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 135-151. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a11/

[1] I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 35 pp. | DOI | MR | Zbl

[2] I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor. Math. Phys., 191:3 (2017), 793–810 | DOI | MR | Zbl

[3] I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A: Math. Theor., 51:42 (2018), 22 pp. | DOI | MR | Zbl

[4] I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theor. Math. Phys., 196:2 (2018), 1200–1216 | DOI | MR | Zbl

[5] A. R. Khakimova, “On desription of generalized invariant manifolds for nonlinear equations”, Ufa Math. J., 10:3 (2018), 106–116 | DOI | MR | Zbl

[6] E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On One Integrable Discrete System”, J. Math. Sci., 241:4 (2019), 409–422 | DOI | Zbl

[7] I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and separation of the variables for integrable chains”, J. Phys. A: Math. Theor., 53:39 (2020), 25 pp. | DOI | MR

[8] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl

[9] I. M. Krichever, “Integration of nonlinear equations by methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR | Zbl

[10] V. Kotlyarov, A. Its, Periodic problem for the nonlinear Schrödinger equation, 2014, arXiv: 1401.4445 | MR | Zbl

[11] A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg-de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470 | MR

[12] A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743 | DOI | MR | Zbl

[13] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media”, Sov. Phys. JETP, 34:1 (1972), 62 pp. | DOI | MR

[14] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc., Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl

[15] F. Demontis, “Exact solutions of the modified Korteweg-de Vries equation”, Theor. Math. Phys., 168:1 (2011), 886–897 | DOI | MR

[16] V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz-Kaup-Newell-Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theor. Math. Phys., 186:2 (2016), 156–182 | DOI | MR | Zbl