On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 115-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We outline the derivation of the mKdV equations related to the Kac–Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$. First we formulate their Lax representations and provide details how they can be obtained from generic Lax operators related to the algebra $sl(6)$ by applying proper Mikhailov type reduction groups $\mathbb{Z}_h$. Here $h$ is the Coxeter number of the relevant Kac–Moody algebra. Next we adapt Shabat's method for constructing the fundamental analytic solutions of the Lax operators $L$. Thus we are able to reduce the direct and inverse spectral problems for $L$ to Riemann–Hilbert problems (RHP) on the union of $2h$ rays $l_\nu$. They leave the origin of the complex $\lambda$-plane partitioning it into equal angles $\pi/h$. To each $l_\nu$ we associate a subalgebra $\mathfrak{g}_\nu$ which is a direct sum of $sl(2)$–subalgebras. In this way, to each regular solution of the RHP we can associate scattering data of $L$ consisting of scattering matrices $T_\nu \in \mathcal{G}_\nu$ and their Gauss decompositions. The main result of the paper states how to find the minimal sets of scattering data $\mathcal{T}_k$, $k=1,2$, from $T_0$ and $T_1$ related to the rays $l_0$ and $l_1$. We prove that each of the minimal sets $\mathcal{T}_1$ and $\mathcal{T}_2$ allows one to reconstruct both the scattering matrices $T_\nu$, $\nu =0, 1, \dots 2h$ and the corresponding potentials of the Lax operators $L$.
Keywords: Kac–Moody algebras, Lax operators, minimal sets of scattering data.
Mots-clés : mKdV equations
@article{UFA_2021_13_2_a10,
     author = {V. S. Gerdjikov},
     title = {On {mKdV} equations related to {Kac-Moody} algebras $A_5^{(1)}$ and $A_5^{(2)}$},
     journal = {Ufa mathematical journal},
     pages = {115--134},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a10/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
TI  - On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$
JO  - Ufa mathematical journal
PY  - 2021
SP  - 115
EP  - 134
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a10/
LA  - en
ID  - UFA_2021_13_2_a10
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%T On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$
%J Ufa mathematical journal
%D 2021
%P 115-134
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a10/
%G en
%F UFA_2021_13_2_a10
V. S. Gerdjikov. On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 115-134. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a10/

[1] Theoret. Math. Phys., 125:3 (2000), 1603–1661 | DOI | DOI | MR | Zbl

[2] R. Beals, R. Coifman, “Inverse scattering and evolution equations”, Comm. Pure Appl. Math., 38:1 (1985), 29–42 | DOI | MR | Zbl

[3] N. Bourbaki, Elements de mathematique. Groupes et algebres de Lie. Chapters I-VIII, Hermann, Paris, 1960–1975 | MR

[4] R. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[5] J. Soviet Math., 30:2 (1985), 1975–2036 | DOI | MR | Zbl | Zbl

[6] V. V. Drinfel'd, V. G. Sokolov, “Lie algebras and equations of Korteweg-de Vries type”, J. Soviet Math., 30:2 (1985), 1975–2036 | DOI | MR | Zbl

[7] L. D. Faddeev, L. A. Takhtadjan, Hamiltonian methods in the theory of solitons, Springer, Berlin, 1987 | MR | Zbl

[8] V. S. Gerdjikov, “Algebraic and analytic aspects of $N$-wave type equations”, Proceedings of an AMS-IMS-SIAM joint summer research conference (South Hadley, June 17–21, 2001), Contemporary Mathematics, 301, Amer. Math. Soc., Providence, RI, 2002, 35–68 | DOI | MR | Zbl

[9] V. S. Gerdjikov, “Derivative nonlinear Schrödinger equations with $\mathbb{Z}_N$ and $\mathbb{D}_N$ reductions”, Romanian J. Phys., 58:5–6 (2013), 573–582 | MR

[10] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Probl., 2:1 (1986), 51–74 | DOI | MR | Zbl

[11] V. S. Gerdjikov, “$Z_N$-reductions and new integrable versions of derivative nonlinear Schrödinger equations”, Nonlinear evolution equations: integrability and spectral methods, Proc. Nonl. Sci. Manchester, eds. A. Degasperis, A.P. Fordy, M. Lakshmanan, University Press, Manchester, 1990, 367–372 | MR

[12] V. S. Gerdjikov, R. Ivanov, A. Stefanov, “Riemann-Hilbert problem, integrability and reductions”, J. Geom. Mech., 11:2 (2019), 167–185 | DOI | MR | Zbl

[13] Theor. Math. Phys., 207:2 (2021), 237–260 | DOI | MR | Zbl

[14] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “Integrable equations and recursion operators related to the affine Lie algebras $A^{(1)}_{r}$”, J. Math. Phys., 56:5 (2015), 052702 | DOI | MR | Zbl

[15] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “MKdV-type of equations related to $B_{2}^{(1)}$ and $A_{4}^{(2)}$ algebra”, Nonlinear Mathematical Physics and Natural Hazards, Springer Proc. Phys., 163, eds. B. Aneva, M. Kouteva-Guentcheva, 2015, 59–69 | DOI | MR | Zbl

[16] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “MKdV-type of equations related to $\mathfrak{sl}(N, \mathbb{C})$ algebra”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholar Publ., 2014, 335–344

[17] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “On a one-parameter family of mKdV equations related to the $\mathfrak{so}(8)$ Lie algebra”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholar Publ., 2014, 345–354

[18] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “On mKdV equations related to the affine Kac-Moody algebra $A^{(2)}_{5}$”, J. Geom. Symmetry Phys., 39 (2015), 17–31 | DOI | MR | Zbl

[19] Theor. Math. Phys., 204:3 (2020), 1110–1129 | DOI | DOI | MR | Zbl

[20] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Springer, Berlin, 2008 | MR | Zbl

[21] V. S. Gerdjikov, A. B. Yanovski, “CBC systems with Mikhailov reductions by Coxeter automorphism: I. Spectral theory of the tecursion operators”, Stud. Appl. Math., 134:2 (2015), 145–180 | DOI | MR | Zbl

[22] V. S. Gerdjikov, A. B. Yanovski, “Completeness of the eigenfunctions for the Caudrey-Beals-Coifman system”, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR | Zbl

[23] V. S. Gerdjikov, A. B. Yanovski, “On soliton equations with $\mathbb{Z}_{{h}}$ and $\mathbb{D}_{{h}}$ reductions: conservation laws and generating operators”, J. Geom. Symmetry Phys., 31 (2013), 57–92 | MR | Zbl

[24] S. Helgasson, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978 | MR

[25] V. Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1994 | MR

[26] D. J. Kaup, A. C. Newell, “Soliton equations, singular dispersion relations and moving eigenvalues”, Adv. Math., 31:1 (1979), 67–100 | DOI | MR | Zbl

[27] A. V. Mikhailov, “The reduction problem and the inverse scattering problem”, Physica D, 3:1–2 (1981), 73–117 | DOI | Zbl

[28] Russian Math. Surv., 42:4 (1987), 1–63 | DOI | MR

[29] A. V. Mikhailov, J. P. Wang, V. S. Novikov, “Partially integrable nonlinear equations with one high symmetry”, J. Phys. A, 38:20 (2005), L337–L341 | DOI | MR | Zbl

[30] A. V. Mikhailov, J. P. Wang, V. S. Novikov, “Symbolic representation and classification of integrable systems”, Algebraic theory of differential equations, eds. M. MacCallum, A. Mikhailov, Cambridge Univ. Press, Cambridge, 2009, 156–216 | MR | Zbl

[31] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons: the inverse scattering method, Plenum Publishing Corp. Consultants Bureau, New York, 1984 | MR | Zbl

[32] Funct. Anal. Appl., 9:3 (1975), 244–247 | DOI | MR | MR

[33] A. B. Shabat, “The inverse scattering problem”, Diff. Equats., 15:10 (1979), 1824–1834 | MR | Zbl

[34] A. B. Shabat, “The infinite-dimensional dressing dynamical system”, Inverse Probl., 8:2 (1992), 303 | DOI | MR | Zbl

[35] A. B. Shabat A. V. Mikhailov, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer series in Nonlinear Dynamics, ed. V.E. Zakharov, Springer, Berlin, 1991, 115–184 | MR | Zbl

[36] Leningrad Math. J., 2:2 (1991), 377–400 | MR | Zbl

[37] Funct. Anal. Appl., 8:3 (1974), 226–235 | DOI | MR | Zbl

[38] Funct. Anal. Appl., 13:3 (1979), 166–174 | DOI | MR

[39] A. Yanovski, “Recursion operators and expansions over adjoint solutions for the Caudrey-Beals-Coifman system with $\mathbb{Z}_{p}$ reductions of Mikhailov type”, J. Geom. Symm. Phys., 30 (2013), 105–119 | MR