On integrability of $O(3)$–model
Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 3-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional $O(3)$ model for a unit vector $\mathbf{n}(\mathbf{r})$ has numerous application in the field theory and in the physics of condensed matter. We prove that this model is integrable under some differential constraint, that is, under certain restrictions for the gradients of fields $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$ parametrizing the vector $\mathbf{n}(\mathbf{r})$). Under the presence of the differential constraint, the equations of the models are reduced to a one-dimensional sine-Gordon equation determining the dependence of the field $\Theta(\mathbf{r})$ on an auxiliary field $a(\mathbf{r})$ and to a system of two equations $(\nabla S)(\nabla S)=0$, $\Delta S =0$ for a complex-valued function $S(\mathbf{r})=a(\mathbf{r}) + \mathrm{i} \Phi(\mathbf{r})$. We show that the solution of this system provide all known before exact solutions of models, namely, two-dimensional magnetic instantons and three-dimensional structures of hedgehog type. We find an exact solution for the field $S(\mathbf{r})$ as an arbitrary implicity function of two variables, which immediately represents the solution for the fields $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$ in an implicit form. We show that the found in this way exact solution of the system for the field $S(\mathbf{r})$ leads one to exact solution of equations of $O(3)$–model in the form of an arbitrary implicit function of two variables.
Keywords: integrable system, $O(3)$–model, differential substitution, quasilinear equation, general solution.
@article{UFA_2021_13_2_a0,
     author = {A. B. Borisov},
     title = {On integrability of $O(3)${\textendash}model},
     journal = {Ufa mathematical journal},
     pages = {3--7},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a0/}
}
TY  - JOUR
AU  - A. B. Borisov
TI  - On integrability of $O(3)$–model
JO  - Ufa mathematical journal
PY  - 2021
SP  - 3
EP  - 7
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a0/
LA  - en
ID  - UFA_2021_13_2_a0
ER  - 
%0 Journal Article
%A A. B. Borisov
%T On integrability of $O(3)$–model
%J Ufa mathematical journal
%D 2021
%P 3-7
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a0/
%G en
%F UFA_2021_13_2_a0
A. B. Borisov. On integrability of $O(3)$–model. Ufa mathematical journal, Tome 13 (2021) no. 2, pp. 3-7. http://geodesic.mathdoc.fr/item/UFA_2021_13_2_a0/

[1] A. B. Borisov, V. V. Kiselev, Nonlinear waves, solitons and localized structures in magnetics, v. 2, Ural Branch of RAS, Ekaterinburg, 2011 (in Russian)

[2] P. G. de Gennes, The physics of liquid crystals, Clarendon Press, Oxford, 1974

[3] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Plenum Publ. Corp., New York, 1984 | MR | Zbl

[4] A. A. Belavin, A. M. Polyakov, “Metastable states of two-dimensional isotropic ferromagnets”, JETP Lett., 22:10 (1975), 245–247

[5] M. V. Kurik, O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies”, Sov. Phys. Usp., 31:3 (1988), 196–224 | DOI | DOI | MR

[6] A. P. Malozemoff, J. C. Slonczewski, Magnetic DomainWalls in Bubble Materials, Academic Press, New York, 1979

[7] A. B. Borisov, “Three-dimensional spiral structures in a ferromagnet”, JETP Lett., 76:2 (2002), 84–87 | DOI

[8] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, Interscience Publ., New-York, 1962 | MR | Zbl

[9] E. Goursat, Cours d'analyse mathématique, v. 3, Intégrales infiniment voisines. Équations aux dérivées partielles du second ordre. Équations intégrales. Calcul des variations, Gauthier-Villars, Paris, 1923 (in French) | MR