Generalized multiplicative derivations in inverse semirings
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 110-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we consider inverse semirings, i.e. semirings $S$ in which for each $a\in S$ there exists a uniquely determined element $a'\in S$ such that $a+a'+a=a$ and $a'+a+a'=a$. If additionally the commutator $[x,y]=xy+y'x$ satisfies both Jordan identities, then such semirings are called Jacobi semirings. The problem of commutativity of such semirings can be solved by specifying easily verifiable conditions which must be satisfied by the commutator or some additive homomorphisms called derivations, or by a pair of nonzero mappings from $S$ to $S$. We consider the pair $(F,f)$ of nonzero mappings $S\to S$ such that $F(xy)=F(x)y+xf(y)$ for all $x,y\in S$ and determine several simple conditions under which the pair $(F,f)$ of such mappings (called a generalized multiplicative derivation) forces the commutativity of a semiring $S$. We show that semiring will be commutative if the conditions we find are satisfied by the elements of a solid ideal, i.e. a nonempty ideal $I$ with the property that for every $x\in I$ elements $x+x'$ are in the center of $I$. For example, a prime Jacobi semiring $S$ with a solid ideal $I$ and a generalized multiplicative derivation $(F,f)$ such that $a(F(xy)+yx)=0$ for all $x,y\in I$ and some nonzero $a\in S$, is commutative. Moreover, in this case $F(s)=s'$ for all $s\in S$ (Theorem 3.2). A prime Jacobi semiring $S$ with a generalized multiplicative derivation $(F,f)$ is commutative also in the case when $S$ contains a nonzero ideal $I$ (not necessarily solid) such that $a(F(x)F(y)+yx)=0$ for all $x,y\in I$ and some nonzero $a\in S$ (Theorem 3.3). Also prime Jacobi semirings with a non zero ideal $I$ and a nonzero derivation $d$ such that $[d(x),x]=0$ for $x\in I$ are commutative.
Keywords: Inverse semirings, annihilators, prime semirings, Jacobi semirings, solid ideals.
Mots-clés : multiplicative derivations
@article{UFA_2021_13_1_a9,
     author = {Y. Ahmed and W. A. Dudek},
     title = {Generalized multiplicative derivations in inverse semirings},
     journal = {Ufa mathematical journal},
     pages = {110--118},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/}
}
TY  - JOUR
AU  - Y. Ahmed
AU  - W. A. Dudek
TI  - Generalized multiplicative derivations in inverse semirings
JO  - Ufa mathematical journal
PY  - 2021
SP  - 110
EP  - 118
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/
LA  - en
ID  - UFA_2021_13_1_a9
ER  - 
%0 Journal Article
%A Y. Ahmed
%A W. A. Dudek
%T Generalized multiplicative derivations in inverse semirings
%J Ufa mathematical journal
%D 2021
%P 110-118
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/
%G en
%F UFA_2021_13_1_a9
Y. Ahmed; W. A. Dudek. Generalized multiplicative derivations in inverse semirings. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/

[1] Y. Ahmed, W. A. Dudek, “Stronger Lie derivations om MA-semirings”, Afrika Mat., 31:5–6 (2020), 891–901 | DOI | MR | Zbl

[2] Y. Ahmed, W. A. Dudek, “Left Jordan derivation on certain semirings”, Hacepette J. Math. | DOI

[3] S. Ali, B. Dhara, A. Fošner, “Some commutativity theorems concerning additive maps and derivations on semiprime rings”, Contemporary Ring Theory 2011, World Scientific, Hackensack, 2012, 135–143 | DOI | MR | Zbl

[4] M. Ashraf, A. Ali, S. Ali, “Some commutativity theorems for rings with generalized derivations”, Southeast Asian Bull. Math., 31:3 (2007), 415–421 | MR | Zbl

[5] M. Ashraf, N. Rehman, “On derivations and commutativity in prime rings”, East-West J. Math., 3:1 (2001), 87–91 | MR | Zbl

[6] M. Brešar, “On the distance of the composition of two derivations to the generalized derivations”, Glasgow Math. J., 33:1 (1991), 89–93 | DOI | MR | Zbl

[7] M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. Math. Sci., 14:3 (1991), 615–618 | DOI | MR | Zbl

[8] B. Dhara, S. Ali, “On multiplicative (generalized)-derivations in prime and semiprime rings”, Aequationes Math., 86:2 (2013), 65–79 | DOI | MR | Zbl

[9] B. Dhara, K. G. Pradhan, “A note on multiplicative (generalized) derivations with annihilator conditions”, Georgian Mat. J., 23:2 (2016), 191–198 | MR | Zbl

[10] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography, Kluwer Acad. Publ., Dodrecht, 2002 | MR | Zbl

[11] M. A. Javed, M. Aslam, “Some commutativity conditions in prime MA-semirings”, Ars Combin., 114 (2014), 373–384 | MR | Zbl

[12] M. A. Javed, M. Aslam, M. Hussain, “On condition $(A_2)$ of Bandelt and Petrich for inverse semirings”, Int. Math. Forum, 7:57–60 (2012), 2903–2914 | MR | Zbl

[13] P. H. Karvellas, “Inversive semirings”, J. Austral. Math. Soc., 18:3 (1974), 277–288 | DOI | MR | Zbl

[14] V. N. Kolokol'tsov, V. Maslov, Idempotent Analysis and Applications, Kluwer, Dordrecht, 1997 | MR | Zbl

[15] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969), 695–698 | DOI | MR | Zbl

[16] V. Maslov, S. N. Sambourskii, Idempotent Analysis, Advances Soviet Math., 13, Amer. Math. Soc., Providence, R.I., 1992 | MR | Zbl

[17] M. Nadeem, M. Aslam, “On the generalization of Brešar theorems”, Quasigroups and Related Systems, 24:1 (2016), 123–128 | MR | Zbl

[18] S. Shafiq, M. Aslam, “Centralizers on semiprime MA-semirings”, Quasigroups and Related Systems, 24:2 (2016), 269–276 | MR | Zbl