Mots-clés : multiplicative derivations
@article{UFA_2021_13_1_a9,
author = {Y. Ahmed and W. A. Dudek},
title = {Generalized multiplicative derivations in inverse semirings},
journal = {Ufa mathematical journal},
pages = {110--118},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/}
}
Y. Ahmed; W. A. Dudek. Generalized multiplicative derivations in inverse semirings. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a9/
[1] Y. Ahmed, W. A. Dudek, “Stronger Lie derivations om MA-semirings”, Afrika Mat., 31:5–6 (2020), 891–901 | DOI | MR | Zbl
[2] Y. Ahmed, W. A. Dudek, “Left Jordan derivation on certain semirings”, Hacepette J. Math. | DOI
[3] S. Ali, B. Dhara, A. Fošner, “Some commutativity theorems concerning additive maps and derivations on semiprime rings”, Contemporary Ring Theory 2011, World Scientific, Hackensack, 2012, 135–143 | DOI | MR | Zbl
[4] M. Ashraf, A. Ali, S. Ali, “Some commutativity theorems for rings with generalized derivations”, Southeast Asian Bull. Math., 31:3 (2007), 415–421 | MR | Zbl
[5] M. Ashraf, N. Rehman, “On derivations and commutativity in prime rings”, East-West J. Math., 3:1 (2001), 87–91 | MR | Zbl
[6] M. Brešar, “On the distance of the composition of two derivations to the generalized derivations”, Glasgow Math. J., 33:1 (1991), 89–93 | DOI | MR | Zbl
[7] M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. Math. Sci., 14:3 (1991), 615–618 | DOI | MR | Zbl
[8] B. Dhara, S. Ali, “On multiplicative (generalized)-derivations in prime and semiprime rings”, Aequationes Math., 86:2 (2013), 65–79 | DOI | MR | Zbl
[9] B. Dhara, K. G. Pradhan, “A note on multiplicative (generalized) derivations with annihilator conditions”, Georgian Mat. J., 23:2 (2016), 191–198 | MR | Zbl
[10] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography, Kluwer Acad. Publ., Dodrecht, 2002 | MR | Zbl
[11] M. A. Javed, M. Aslam, “Some commutativity conditions in prime MA-semirings”, Ars Combin., 114 (2014), 373–384 | MR | Zbl
[12] M. A. Javed, M. Aslam, M. Hussain, “On condition $(A_2)$ of Bandelt and Petrich for inverse semirings”, Int. Math. Forum, 7:57–60 (2012), 2903–2914 | MR | Zbl
[13] P. H. Karvellas, “Inversive semirings”, J. Austral. Math. Soc., 18:3 (1974), 277–288 | DOI | MR | Zbl
[14] V. N. Kolokol'tsov, V. Maslov, Idempotent Analysis and Applications, Kluwer, Dordrecht, 1997 | MR | Zbl
[15] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969), 695–698 | DOI | MR | Zbl
[16] V. Maslov, S. N. Sambourskii, Idempotent Analysis, Advances Soviet Math., 13, Amer. Math. Soc., Providence, R.I., 1992 | MR | Zbl
[17] M. Nadeem, M. Aslam, “On the generalization of Brešar theorems”, Quasigroups and Related Systems, 24:1 (2016), 123–128 | MR | Zbl
[18] S. Shafiq, M. Aslam, “Centralizers on semiprime MA-semirings”, Quasigroups and Related Systems, 24:2 (2016), 269–276 | MR | Zbl