@article{UFA_2021_13_1_a8,
author = {R. A. Aliev and A. N. Ahmadova},
title = {Boundedness of discrete {Hilbert} transform on discrete {Morrey} spaces},
journal = {Ufa mathematical journal},
pages = {98--109},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/}
}
R. A. Aliev; A. N. Ahmadova. Boundedness of discrete Hilbert transform on discrete Morrey spaces. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/
[1] D. R. Adams, Morrey Spaces, Birkhäuser, Basel, 2015 | MR | Zbl
[2] R. A. Aliev, A. F. Amrahova, “Properties of the discrete Hilbert transform”, Compl. Anal. Oper. Theo., 13:8 (2019), 3883–3897 | DOI | MR | Zbl
[3] R. A. Aliev, A. F. Amrahova, “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6–12 | DOI | MR | Zbl
[4] K. F. Andersen, “Inequalities with weights for discrete Hilbert transforms”, Canad. Math. Bul., 20:1 (1977), 9–16 | DOI | MR | Zbl
[5] Y. Belov, T. Y. Mengestie, K. Seip, “Discrete Hilbert transforms on sparse sequences”, Proc. Lond. Math. Soc., 103:1 (2011), 73–105 | DOI | MR | Zbl
[6] Y. Belov, T. Y. Mengestie, K. Seip, “Unitary discrete Hilbert transforms”, J. Anal. Math., 112:1 (2010), 383–393 | DOI | MR | Zbl
[7] B. T. Bilalov, A. A. Huseynli, S. R. El-Shabrawy, “Basis properties of trigonometric systems in weighted Morrey spaces”, Azer. J. Math., 9:2 (2019), 183–209 | MR | Zbl
[8] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function”, Rend. Mat. Appl., 7:3–4 (1987), 273–279 | MR | Zbl
[9] I. Gabisoniya, A. Meskhi, “Two weighted inequalities for a discrete Hilbert transform”, Proc. Razm. Math. Inst., 116 (1998), 107–122 | MR | Zbl
[10] H. Gunawan, D. I. Hakim, K. M. Limanta, A. A. Masta, “Inclusion properties of generalized Morrey spaces”, Math. Nachr., 290:2–3 (2017), 332–340 | DOI | MR | Zbl
[11] H. Gunawan, C. Schwanke, “The Hardy-Littlewood maximal operator on discrete Morrey spaces”, Mediterr. J. Math., 16:1 (2019), 24 | DOI | MR | Zbl
[12] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176:2 (1973), 227–251 | DOI | MR | Zbl
[13] E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel, 2016, 59–69 | DOI | MR | Zbl
[14] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[15] Y. Rakotondratsimba, “Two weight inequality for the discrete Hilbert transform”, Soochow J. Math., 25:4 (1999), 353–373 | MR | Zbl
[16] M. Riesz, “Sur les fonctions conjuguées”, Math. Zeit., 27:1 (1928), 218–244 | DOI | MR
[17] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl
[18] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl
[19] W. Sickel, D. C. Yang, W. Yuan, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, Berlin, 2010 | MR | Zbl
[20] V. D. Stepanov, S. Yu. Tikhonov, “Two weight inequalities for the Hilbert transform of monotone functions”, Dokl. Math., 83:2 (2011), 241–242 | DOI | MR | Zbl