Boundedness of discrete Hilbert transform on discrete Morrey spaces
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 98-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hilbert transform plays an important role in the theory and practice of signal processing operations in continuous system theory because of its relevance to such problems as envelope detection and demodulation, as well as because of its use in relating the real and imaginary components, and the magnitude and phase components of spectra. The Hilbert transform is a multiplier operator and is widely used in the theory of Fourier transforms. The Hilbert transform was the motivation for the development of modern harmonic analysis. Its discrete version is also widely used in many areas of science and technology and plays an important role in digital signal processing. The essential motivation behind thinking about discrete transforms is that experimental data are most frequently not taken in a continuous manner but sampled at discrete time values. Since much of the data collected in both the physical sciences and engineering are discrete, the discrete Hilbert transform is a rather useful tool in these areas for the general analysis of this type of data. The Hilbert transform has been well studied on classical function spaces Lebesgue, Morrey, etc. But its discrete version, which also has numerous applications, has not been fully studied in discrete analogues of these spaces. In this paper we discuss the discrete Hilbert transform on discrete Morrey spaces. In particular, we obtain its boundedness on the discrete Morrey spaces using boundedness of the Hilbert transform on Morrey spaces.
Keywords: discrete Hilbert transform, Morrey spaces, discrete Morrey spaces, boundedness.
@article{UFA_2021_13_1_a8,
     author = {R. A. Aliev and A. N. Ahmadova},
     title = {Boundedness of discrete {Hilbert} transform on discrete {Morrey} spaces},
     journal = {Ufa mathematical journal},
     pages = {98--109},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/}
}
TY  - JOUR
AU  - R. A. Aliev
AU  - A. N. Ahmadova
TI  - Boundedness of discrete Hilbert transform on discrete Morrey spaces
JO  - Ufa mathematical journal
PY  - 2021
SP  - 98
EP  - 109
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/
LA  - en
ID  - UFA_2021_13_1_a8
ER  - 
%0 Journal Article
%A R. A. Aliev
%A A. N. Ahmadova
%T Boundedness of discrete Hilbert transform on discrete Morrey spaces
%J Ufa mathematical journal
%D 2021
%P 98-109
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/
%G en
%F UFA_2021_13_1_a8
R. A. Aliev; A. N. Ahmadova. Boundedness of discrete Hilbert transform on discrete Morrey spaces. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a8/

[1] D. R. Adams, Morrey Spaces, Birkhäuser, Basel, 2015 | MR | Zbl

[2] R. A. Aliev, A. F. Amrahova, “Properties of the discrete Hilbert transform”, Compl. Anal. Oper. Theo., 13:8 (2019), 3883–3897 | DOI | MR | Zbl

[3] R. A. Aliev, A. F. Amrahova, “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6–12 | DOI | MR | Zbl

[4] K. F. Andersen, “Inequalities with weights for discrete Hilbert transforms”, Canad. Math. Bul., 20:1 (1977), 9–16 | DOI | MR | Zbl

[5] Y. Belov, T. Y. Mengestie, K. Seip, “Discrete Hilbert transforms on sparse sequences”, Proc. Lond. Math. Soc., 103:1 (2011), 73–105 | DOI | MR | Zbl

[6] Y. Belov, T. Y. Mengestie, K. Seip, “Unitary discrete Hilbert transforms”, J. Anal. Math., 112:1 (2010), 383–393 | DOI | MR | Zbl

[7] B. T. Bilalov, A. A. Huseynli, S. R. El-Shabrawy, “Basis properties of trigonometric systems in weighted Morrey spaces”, Azer. J. Math., 9:2 (2019), 183–209 | MR | Zbl

[8] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function”, Rend. Mat. Appl., 7:3–4 (1987), 273–279 | MR | Zbl

[9] I. Gabisoniya, A. Meskhi, “Two weighted inequalities for a discrete Hilbert transform”, Proc. Razm. Math. Inst., 116 (1998), 107–122 | MR | Zbl

[10] H. Gunawan, D. I. Hakim, K. M. Limanta, A. A. Masta, “Inclusion properties of generalized Morrey spaces”, Math. Nachr., 290:2–3 (2017), 332–340 | DOI | MR | Zbl

[11] H. Gunawan, C. Schwanke, “The Hardy-Littlewood maximal operator on discrete Morrey spaces”, Mediterr. J. Math., 16:1 (2019), 24 | DOI | MR | Zbl

[12] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176:2 (1973), 227–251 | DOI | MR | Zbl

[13] E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel, 2016, 59–69 | DOI | MR | Zbl

[14] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR

[15] Y. Rakotondratsimba, “Two weight inequality for the discrete Hilbert transform”, Soochow J. Math., 25:4 (1999), 353–373 | MR | Zbl

[16] M. Riesz, “Sur les fonctions conjuguées”, Math. Zeit., 27:1 (1928), 218–244 | DOI | MR

[17] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl

[18] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl

[19] W. Sickel, D. C. Yang, W. Yuan, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, Berlin, 2010 | MR | Zbl

[20] V. D. Stepanov, S. Yu. Tikhonov, “Two weight inequalities for the Hilbert transform of monotone functions”, Dokl. Math., 83:2 (2011), 241–242 | DOI | MR | Zbl