Mots-clés : Laplace equation.
@article{UFA_2021_13_1_a7,
author = {E. H. Khalilov and M. N. Bakhshaliyeva},
title = {Study of approximate solution to integral equation associated with mixed boundary value problem for {Laplace} equation},
journal = {Ufa mathematical journal},
pages = {85--97},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a7/}
}
TY - JOUR AU - E. H. Khalilov AU - M. N. Bakhshaliyeva TI - Study of approximate solution to integral equation associated with mixed boundary value problem for Laplace equation JO - Ufa mathematical journal PY - 2021 SP - 85 EP - 97 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a7/ LA - en ID - UFA_2021_13_1_a7 ER -
%0 Journal Article %A E. H. Khalilov %A M. N. Bakhshaliyeva %T Study of approximate solution to integral equation associated with mixed boundary value problem for Laplace equation %J Ufa mathematical journal %D 2021 %P 85-97 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a7/ %G en %F UFA_2021_13_1_a7
E. H. Khalilov; M. N. Bakhshaliyeva. Study of approximate solution to integral equation associated with mixed boundary value problem for Laplace equation. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 85-97. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a7/
[1] R.J. Heydarov, “On solvability of an external problem with impedance boundary condition for Helmholtz equation by integral equations method”, Proceedings of IMM of NAS of Azerbaijan, 42:1 (2016), 3–9 | MR | Zbl
[2] E.H. Khalilov, “Constructive method for solving a boundary value problem with impedance boundary condition for the Helmholtz equation”, Diff. Equat., 54:4 (2018), 539–550 | DOI | MR | Zbl
[3] E.G. Khalilov, “Justification of the collocation method for a class of surface integral equations”, Math. Notes, 107:4 (2020), 663–678 | DOI | MR | Zbl
[4] E.H. Khalilov, “On approximate solution of external Dirichlet boundary value problem for Laplace equation by collocation method”, Azerbaijan Journal of Mathematics, 5:2 (2015), 13–20 | MR | Zbl
[5] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Mathematical and Computer Modeling, 15:3–5 (1991), 229–243 | DOI | MR | Zbl
[6] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1967 | MR | Zbl
[7] V.S. Vladimirov, Equations of mathematical physics, Marcel Dekker, New York, 1971 | MR | MR | Zbl
[8] E.H. Khalilov, M.N. Bakhshaliyeva, “Quadrature formulas for simple and double layer logarithmic potentials”, Proceedings of IMM of NAS of Azerbaijan, 45:1 (2019), 155–162 | MR | Zbl
[9] Yu.A. Kustov, B.I. Musaev, Cubature formula for two-dimensional singular integral and its applications, Preprint No 4281-81, VINITI, 1981, 60 pp. (in Russian)
[10] D. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley Sons, New York, 1983 | MR | Zbl
[11] G.M. Vainikko, “Regular convergence of operators and the approximate solution of equations”, J. Soviet Math., 15:6 (1981), 675–705 | DOI | MR | Zbl