Extremal problems in theory of central Wiman-Valiron index
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 68-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some properties of central index in Wiman-Valiron index. We introduce the notion of a determining sequence of a central index $\nu(r)$ corresponding to a fixed transcendental function $f$ and the notion of a determining sequence for an arbitrary fixed central index $\nu(r)$. Let $\rho_1,\rho_2,\dots,\rho_s,\dots$ be the points of the jumps of the function $\nu(r)$ taken counting their multiplicities. This means that if at a point $\rho_s$ the jump is equal to $m_s$, then the quantity $\rho_s$ appears $m_s$ times in this sequence. Such sequence is called determining sequence of the function $\nu(r)$. We introduce the notion of the regularization of the function $\nu(r)$, which is employed for proving main statements. We study two extremal problems in the class of functions with a prescribed central index. We obtain the expression for the maximum of the modulus of the extremal function in terms of its central index. The main obtained results are as follows. Let $T_\nu$ be the set of all transcendental functions $f$ with a prescribed central index $\nu(r)$, $M(r,f)=\max\{|f(re^{i\theta})|:\, 0\leqslant\theta\leqslant2\pi\}$, and let $M(r,\nu)=\sup\{M(r,f):f\in T_\nu\}$. Then for each $r>0$, in the class of the functions $T_{\nu}$, the quantity $M(r,\nu)$ is attained at the same function for all $r>0$. We describe the form of such extremal function. We also prove that for each fixed $r_0>0$ and for each prescribed central index $\nu(r)$, in the class $T_\nu$ there exists a function $f_0(z)$ such that $M(r_0,f_0)=\inf\{M(r_0,f):f\in T_\nu\}$.
Keywords: Wiman-Valiron theory, central index, determining sequence, regularization, extremal problem.
@article{UFA_2021_13_1_a5,
     author = {K. G. Malyutin and M. V. Kabanko and V. A. Malyutin},
     title = {Extremal problems in theory of central {Wiman-Valiron} index},
     journal = {Ufa mathematical journal},
     pages = {68--76},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a5/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
AU  - V. A. Malyutin
TI  - Extremal problems in theory of central Wiman-Valiron index
JO  - Ufa mathematical journal
PY  - 2021
SP  - 68
EP  - 76
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a5/
LA  - en
ID  - UFA_2021_13_1_a5
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%A V. A. Malyutin
%T Extremal problems in theory of central Wiman-Valiron index
%J Ufa mathematical journal
%D 2021
%P 68-76
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a5/
%G en
%F UFA_2021_13_1_a5
K. G. Malyutin; M. V. Kabanko; V. A. Malyutin. Extremal problems in theory of central Wiman-Valiron index. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a5/

[1] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Springer-Verlag, Berlin, 1968 | MR | Zbl

[2] A. Wiman, “Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Gliede der zugehorigen Taylor'schen Reihe”, Acta Mathematica, 37 (1914), 305–326 | DOI | MR | Zbl

[3] A. Wiman., “Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Beitrage bei gegebenem Argumente der Funktion”, Acta Mathematica, 41 (1916), 1–28 | DOI | MR | Zbl

[4] G. Valiron, Lectures on the general theory of integral functions, AMS Chelsea Publ., New York, 2017

[5] P.C. Rosenbloom, Probability and entire functions, Studies in Mathematical Analysis and Related Topics, Calif. Univ. Press, Stanford, 1963 | MR

[6] R. London, “Note on a lemma of Rosenblom”, Quart. J. Math, 21:1 (1970), 67–69 | DOI | MR | Zbl

[7] P. Lockhart, E.G. Straus, “Relations between the maximum modulus and maximum term of entire functions”, Pacific J. Math, 118:2 (1985), 479–485 | DOI | MR | Zbl

[8] M.N. Sheremeta, “Equivalence of the logarithms of the maximum modulus and the maximum term of an entire series of Dirichlet”, Math. Notes, 42:2 (1987), 624–630 | DOI | MR | MR | Zbl | Zbl

[9] M.N. Sheremeta, “Full equivalence of the logarithms of the maximum modulus and the maximal term of an entire Dirichlet series”, Math. Notes, 47:6 (1990), 608–611 | DOI | MR | Zbl

[10] M.N. Sheremeta, “A relation between the maximal term and maximum of the modulus of the entire dirichlet series”, Math. Notes, 51:5 (1992), 522–526 | DOI | MR | Zbl

[11] M.N. Sheremeta, “On the maximum of the modulus and the maximal term of Dirichlet series”, Math. Notes, 73:3 (2003), 402–407 | DOI | MR | MR | Zbl

[12] P.V. Filevich, “Wiman-Valiron type inequalities for entire and random entire functions of finite logarithmic order”, Siber. Math. J., 42:3 (2001), 579–586 | DOI | MR | Zbl

[13] P.V. Filevich, “Asymptotic relations between maximums of absolute values and maximums of real parts of entire functions”, Math. Notes, 75:3 (2004), 410–417 | DOI | MR | Zbl

[14] P.V. Filevich, “On Valiron's theorem on the relations between the maximum modulus and the maximal term of an entire Dirichlet series”, Russ. Math. (Iz. VUZ), 48:4 (2004), 63–69 | MR | MR | Zbl

[15] P.V. Filevych, “On the growth of the maximum modulus of an entire function depending on the growth of its central index”, Ufa Math. J., 3:1 (2011), 92–100 | MR | MR

[16] G. Pólya, G. Szegő, Problems and theorems in analysis, v. II, Theory of functions, zeros, polynomials, determinants, number theory, geometry, Springer-Verlag, Berlin, 1971 | MR | MR