@article{UFA_2021_13_1_a4,
author = {M. R. Langarshoev and S. S. Khorazmshoev},
title = {Sharp inequalities of {Jackson-Stechkin} type and widths of classes of functions in $L_{2}$},
journal = {Ufa mathematical journal},
pages = {56--67},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/}
}
TY - JOUR
AU - M. R. Langarshoev
AU - S. S. Khorazmshoev
TI - Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$
JO - Ufa mathematical journal
PY - 2021
SP - 56
EP - 67
VL - 13
IS - 1
UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/
LA - en
ID - UFA_2021_13_1_a4
ER -
M. R. Langarshoev; S. S. Khorazmshoev. Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 56-67. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/
[1] E.A. Storozhenko, V.G. Krotov, P. Oswald, “Direct and converse theorems of Jackson type in $L_p$ spaces, $0
1$”, Math. USSR-Sb., 27:3 (1975), 355–374 | DOI | MR | Zbl[2] K.V. Runovskii, “A direct theorem on approximation “by angle” in the spaces $L_p$, $0
1$”, Math. Notes, 52:5 (1992), 1140–1142 | DOI | MR[3] S.B. Vakarchuk, “Exact constants in Jackson-type inequalities and exact values of widths”, Math. Notes, 78:5 (2005), 735–739 | DOI | MR | Zbl
[4] S.B. Vakarchuk, V.I. Zabutna, “Widths of function classes from $L_{2}$ and exact constants in Jackson type inequalities”, East J. Approx, 14:4 (2008), 411–421 | MR | Zbl
[5] S.B. Vakarchuk, V.I. Zabutnaya, “A sharp inequality of Jackson-Stechkin type in $L_2$ and the widths of functional classes”, Math. Notes, 86:3 (2009), 306–313 | DOI | MR | Zbl
[6] M.Sh. Shabozov, G.A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Siberian Math. J., 52:6 (2011), 1124–1136 | DOI | MR | Zbl
[7] M.Sh. Shabozov, S.S. Khorazmshoev, “Best polynomial approximations of differentiable periodic functions and values of widths of classes of functions defined by generalized continuity moduluses in $L_{2}$”, Izv. AN RT. Otd. Fiz.-Mat. Chim. Geol. Tekn. Nauk, 1(142) (2011), 7–19 (in Russian)
[8] S.B. Vakarchuk, V.I. Zabutnaya, “Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_2$”, Math. Notes, 92:4 (2012), 458–472 | DOI | MR | Zbl
[9] N.I. Chernykh, “The best approximation of periodic functions by trigonometric polynomials in $L_2$”, Math. Notes, 2:5 (1967), 803–808 | DOI | MR | Zbl
[10] S. Focart, Yu. Kryakin, A. Shadrin, “On the exact constant in the Jacson – Stechkin inequality for the uniform metric”, Constr. Approx, 65:6 (1999), 157–179 | MR
[11] K.K. Palavonov, “On best approximation of periodic functions and values of widths of functional classes in $L_{2}$”, Izv. AN RT. Otd. Fiz.-Mat. Chim. Geol. Tekn. Nauk, 2(151) (2013), 40–50 (in Russian)
[12] V.M. Tikhomirov, Some issues of approximation theory, Moscow State Univ., M., 1976 (in Russian) | MR
[13] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR