Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 56-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some problems of the approximation theory require estimating the best approximation of $2\pi$-periodic functions by trigonometric polynomials in the space $L_2$, and while doing this, instead of the usual modulus of continuity $\omega_{m}(f, t)$, sometimes it is more convenient to use an equivalent characteristic $\Omega_{m}(f, t)$ called the generalized modulus of continuity. Similar averaged characteristic of the smoothness of a function was considered by K.V. Runovskiy and E.A. Storozhenko, V.G. Krotov and P. Oswald while studying important issues of constructive function theory in metric space $L_{p}$, $0 p 1$. In the space $L_2$, in finding exact constants in the Jackson-type inequality, it was used by S.B. Vakarchuk. We continue studies of problems approximation theory and consider new sharp inequalities of the type Jackson–Stechkin relating the best approximations of differentiable periodic functions by trigonometric polynomials with integrals containing generalized modules of continuity. For classes of functions defined by means of these characteristics, we calculate exact values of some known $n$-widths are calculated.
Keywords: best polynomial approximation, generalized modulus of continuity, extremal characteristic, widths.
@article{UFA_2021_13_1_a4,
     author = {M. R. Langarshoev and S. S. Khorazmshoev},
     title = {Sharp inequalities of {Jackson-Stechkin} type and widths of classes of functions in $L_{2}$},
     journal = {Ufa mathematical journal},
     pages = {56--67},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/}
}
TY  - JOUR
AU  - M. R. Langarshoev
AU  - S. S. Khorazmshoev
TI  - Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$
JO  - Ufa mathematical journal
PY  - 2021
SP  - 56
EP  - 67
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/
LA  - en
ID  - UFA_2021_13_1_a4
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%A S. S. Khorazmshoev
%T Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$
%J Ufa mathematical journal
%D 2021
%P 56-67
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/
%G en
%F UFA_2021_13_1_a4
M. R. Langarshoev; S. S. Khorazmshoev. Sharp inequalities of Jackson-Stechkin type and widths of classes of functions in $L_{2}$. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 56-67. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a4/

[1] E.A. Storozhenko, V.G. Krotov, P. Oswald, “Direct and converse theorems of Jackson type in $L_p$ spaces, $0

1$”, Math. USSR-Sb., 27:3 (1975), 355–374 | DOI | MR | Zbl

[2] K.V. Runovskii, “A direct theorem on approximation “by angle” in the spaces $L_p$, $0

1$”, Math. Notes, 52:5 (1992), 1140–1142 | DOI | MR

[3] S.B. Vakarchuk, “Exact constants in Jackson-type inequalities and exact values of widths”, Math. Notes, 78:5 (2005), 735–739 | DOI | MR | Zbl

[4] S.B. Vakarchuk, V.I. Zabutna, “Widths of function classes from $L_{2}$ and exact constants in Jackson type inequalities”, East J. Approx, 14:4 (2008), 411–421 | MR | Zbl

[5] S.B. Vakarchuk, V.I. Zabutnaya, “A sharp inequality of Jackson-Stechkin type in $L_2$ and the widths of functional classes”, Math. Notes, 86:3 (2009), 306–313 | DOI | MR | Zbl

[6] M.Sh. Shabozov, G.A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Siberian Math. J., 52:6 (2011), 1124–1136 | DOI | MR | Zbl

[7] M.Sh. Shabozov, S.S. Khorazmshoev, “Best polynomial approximations of differentiable periodic functions and values of widths of classes of functions defined by generalized continuity moduluses in $L_{2}$”, Izv. AN RT. Otd. Fiz.-Mat. Chim. Geol. Tekn. Nauk, 1(142) (2011), 7–19 (in Russian)

[8] S.B. Vakarchuk, V.I. Zabutnaya, “Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_2$”, Math. Notes, 92:4 (2012), 458–472 | DOI | MR | Zbl

[9] N.I. Chernykh, “The best approximation of periodic functions by trigonometric polynomials in $L_2$”, Math. Notes, 2:5 (1967), 803–808 | DOI | MR | Zbl

[10] S. Focart, Yu. Kryakin, A. Shadrin, “On the exact constant in the Jacson – Stechkin inequality for the uniform metric”, Constr. Approx, 65:6 (1999), 157–179 | MR

[11] K.K. Palavonov, “On best approximation of periodic functions and values of widths of functional classes in $L_{2}$”, Izv. AN RT. Otd. Fiz.-Mat. Chim. Geol. Tekn. Nauk, 2(151) (2013), 40–50 (in Russian)

[12] V.M. Tikhomirov, Some issues of approximation theory, Moscow State Univ., M., 1976 (in Russian) | MR

[13] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR