Joint estimates for zeros and Taylor coefficients of entire function
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 31-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, for an entire function $f(z)=\sum\limits_{n=0}^{\infty} f_n z^n$, we provide asymptotic and uniform bounds of commensurability of the growth of zeroes and the decaying of the Taylor coefficients one with respect to the other. As an initial point for these studies, the following Hadamard statement serves: if the coefficients of the series obey the inequality $|f_n|\leqslant\varphi(n)$ with some function $\varphi(x),$ then the absolute values of the zeroes grows faster than $1/\sqrt[n]{\varphi(n)}.$ In the present work we improve recently obtained lower bound for the joint growth of the zeroes and the coefficients via the maximal term of the Taylor series of the function $f(z)$ or via the counting function of its zeroes. The employing of Hadamard-rectified coefficients of the series give an opportunity to establish corresponding two-sided estimates. By the methods developing classical ideas we find a numerical dependence of such estimates on the sizes of the gaps of the power series representing the entire function. In particular, we find asymptotic identities relating the zeroes and the coefficients of an entire function. The obtained estimates are sharp and strengthen the known results by other authors.
Keywords: Hadamard-rectified zeroes of entire function.
Mots-clés : Taylor coefficients
@article{UFA_2021_13_1_a2,
     author = {G. G. Braichev},
     title = {Joint estimates for zeros and {Taylor} coefficients of entire function},
     journal = {Ufa mathematical journal},
     pages = {31--45},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a2/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - Joint estimates for zeros and Taylor coefficients of entire function
JO  - Ufa mathematical journal
PY  - 2021
SP  - 31
EP  - 45
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a2/
LA  - en
ID  - UFA_2021_13_1_a2
ER  - 
%0 Journal Article
%A G. G. Braichev
%T Joint estimates for zeros and Taylor coefficients of entire function
%J Ufa mathematical journal
%D 2021
%P 31-45
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a2/
%G en
%F UFA_2021_13_1_a2
G. G. Braichev. Joint estimates for zeros and Taylor coefficients of entire function. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a2/

[1] J. Hadamard, “Sur la croissance des fonctions entières”, Bull. Soc. math., 24 (1896), 186–187 | MR | Zbl

[2] E. Borel, Leçons sur les fonctions entières, 2e édition, Gauthier-Villars, Paris, 1921 | Zbl

[3] E. Lindelöf, “Mémoire sur la théorie des fonctions entières de genre fini”, Acta Societatis Scientiarum Fennicae, XXXI:1 (1903) | MR

[4] E. Lindelöf, “Sur la détermination de la croissance des fonctions entières définies par un développement de Taylor”, Bull. Sciences math. deuxieme serie, XXVII (1903), 213–232

[5] A. Pringsheim, “Elementare Theorie der ganzen transzendenten Funktionen von endlicher Ordnung”, Mathematische Annalen, 58 (1904), 257–342 | DOI | MR | Zbl

[6] G. Valiron., “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance règulière”, Annales de la faculté des sciences de Toulouse 3e série, 5 (1913), 117–257 | DOI | MR

[7] G. Valiron, Lectures on the general Theory of integral functions, Private, Toulouse, 1923

[8] V.A. Oskolkov, “On some questions in the theory of entire functions”, Russ. Acad. Sci. Sb. Math., 78:1 (1994), 113–129 | MR | Zbl

[9] M.N. Sheremeta, “Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion”, Izv. VUZov. Matem., 1967, no. 2, 100–108 (in Russian) | MR

[10] G. Valiron, Fonctions entières et mèromorphes d'une varable, Mémorial des sciences mathématiques, 2, Gauthier-Villars, Paris, 1925

[11] M.E. Iaggi, “Relations entre les zero et les coefficients d'une fonction entière”, Nouvelles Annales de mathématiques. Série 4, 1 (1901), 16–19

[12] M.E. Iaggi., “Sur les zéros des fonctions entières”, Nouvelles annales de mathématiques. Série 4, 2 (1902), 218–226

[13] J. Hadamard, “Sur les fonctions entières”, C.R. Acad. Science Fr. séance du 29 decembre, 1902, 1309–1311 | Zbl

[14] J. Hadamard, Étude sur les propriétées des fonctions entières et en parliculièr, une fonction, etudié par Riemann, Selecta, Gauthier-Villars, Paris, 1935

[15] E. Borel., “Sur les Zeros des fonctions entières”, Acta Math., 20 (1897), 357–396 | DOI | MR | Zbl

[16] V.A. Oskolkov, Properties of functions defined by values of their linear functionals, Habilitation thesis, Moscow State Univ., M., 1994 (in Russian)

[17] I.V. Pel'chars'ka, M.M. Sheremeta, “On the value distribution and coefficients of the power expansion of an entire function”, Dopov. Nats. Akad. Nauk Ukr. Mat. Pryr. Tekh. Nauky, 5 (2005), 21–25 (in Ukrainian) | MR

[18] I.V. Andrusyak, “Zeros and coefficients of analytic functions”, Visn. Derzh. Univ. L'viv. Politekh., 625 (2008), 43–47 | Zbl

[19] I.V. Andrusyak, P.V. Filevych, “Coefficients of power expansion and $a$-points of entire function”, Visn. Derzh. Univ. L'viv. Politekh., 804 (2014), 70–74 | Zbl

[20] A. Ostrovski., “Sur les modules des zeros des fonctions entières”, C.R. Acad. Sci., 206 (1938), 1541 | Zbl

[21] G.G. Braichev, “Exact relationships between certain characteristics of growth for complex sequences”, Ufa Math. J., 5:4 (2013), 16–29 | DOI | MR

[22] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular variation, Encyclopedia of mathematics and its applications, 27, Cambridge university Press, Cambridge, 1989 | MR | Zbl

[23] I.V. Andrusyak, P.V. Filevych, “Coefficients of power expansion and $a$-points of an entire function with Borel exceptional value”, Ukrainian Math. J., 68:2 (2016), 159–170 | DOI | MR | Zbl

[24] D.M. Simeunović, “Sur la répartition des zéros d'une class de polynômes”, Publication de l'institut Mathématique, Nouvelle série, 28:42 (1980), 187–194 | MR | Zbl