Mots-clés : immigration
@article{UFA_2021_13_1_a12,
author = {A. A. Imomov and A. Kh. Meyliev},
title = {On asymptotic structure of continuous-time {Markov} branching processes allowing immigration without higher-order moments},
journal = {Ufa mathematical journal},
pages = {137--147},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a12/}
}
TY - JOUR AU - A. A. Imomov AU - A. Kh. Meyliev TI - On asymptotic structure of continuous-time Markov branching processes allowing immigration without higher-order moments JO - Ufa mathematical journal PY - 2021 SP - 137 EP - 147 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a12/ LA - en ID - UFA_2021_13_1_a12 ER -
%0 Journal Article %A A. A. Imomov %A A. Kh. Meyliev %T On asymptotic structure of continuous-time Markov branching processes allowing immigration without higher-order moments %J Ufa mathematical journal %D 2021 %P 137-147 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a12/ %G en %F UFA_2021_13_1_a12
A. A. Imomov; A. Kh. Meyliev. On asymptotic structure of continuous-time Markov branching processes allowing immigration without higher-order moments. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 137-147. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a12/
[1] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl
[2] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[3] A. A. Imomov, A. Kh. Meyliyev, “On application of slowly varying functions with remainder in the theory of Markov branching processes with mean one and infinite variance”, Ukrainian Math. J. (to appear) | MR
[4] A. A. Imomov, “On conditioned limit structure of the Markov branching process without finite second moment”, Malaysian J. Math. Sci., 11:3 (2017), 393–422 | MR | Zbl
[5] A. A. Imomov, “On long-term behavior of continuous-time Markov branching processes allowing immigration”, J. Siberian Federal Univ. Math. Phys., 7:4 (2014), 443–454 | DOI | Zbl
[6] A. A. Imomov, “On Markov analogue of $Q$-processes with continuous time”, Theory Prob. Math. Stat., 84 (2012), 57–64 | DOI | MR | Zbl
[7] J. Li, A. Chen, A. G. Pakes, “Asymptotic properties of the Markov branching process with immigration”, J. Theor. Prob., 25:1 (2012), 122–143 | DOI | MR | Zbl
[8] A. G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | MR | Zbl
[9] A. G. Pakes, “On Markov branching processes with immigration”, Sankhyā: The Indian J. Stat., A37 (1975), 129–138 | MR | Zbl
[10] E. Seneta, Regularly varying functions, Springer, Berlin, 1976 | MR | Zbl
[11] Theory Probab. Appl., 2:3 (1957), 321–331 | DOI | MR | Zbl
[12] B. A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russian) | MR | Zbl
[13] Theory Probab. Appl., 2:2 (1957), 245–253 | DOI | MR | Zbl