Generalization of Hadamard-type trapezoid inequalities for fractional integral operators
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 119-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The role of convexity theory in applied problems, especially in optimization problems, is well known. The integral Hermite-Hadamard inequality has a special place in this theory since it provides an upper bound for the mean value of a function. In solving applied problems from different fields of science and technology, along with the classical integro-differential calculus, fractional calculus plays an important role. A lot of research is devoted to obtaining an upper bound in the Hermite-Hadamard inequality using operators of fractional calculus. The article formulates and proves the identity with the participation of the fractional integration operator. Based on this identity, new generalized Hadamard-type integral inequalities are obtained for functions for which the second derivatives are convex and take values at intermediate points of the integration interval. These results are obtained using the convexity property of a function and two classical integral inequalities, the Hermite-Hadamard integral inequality and its other form, the power mean inequality. It is shown that the upper limit of the absolute error of inequality decreases in approximately $n^{2}$ times, where $n$ is the number of intermediate points. In a particular case, the obtained estimates are consistent with known estimates in the literature. The results obtained in the article can be used in further researches in the integro-differential fractional calculus.
Keywords: convexity, Hermite–Hadamard inequality, power–mean inequality, Riemann–Liouville fractional Integrals.
Mots-clés : Hölder inequality
@article{UFA_2021_13_1_a10,
     author = {B. Bayraktar and M. Emin \"Ozdemir},
     title = {Generalization of {Hadamard-type} trapezoid inequalities for fractional integral operators},
     journal = {Ufa mathematical journal},
     pages = {119--130},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/}
}
TY  - JOUR
AU  - B. Bayraktar
AU  - M. Emin Özdemir
TI  - Generalization of Hadamard-type trapezoid inequalities for fractional integral operators
JO  - Ufa mathematical journal
PY  - 2021
SP  - 119
EP  - 130
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/
LA  - en
ID  - UFA_2021_13_1_a10
ER  - 
%0 Journal Article
%A B. Bayraktar
%A M. Emin Özdemir
%T Generalization of Hadamard-type trapezoid inequalities for fractional integral operators
%J Ufa mathematical journal
%D 2021
%P 119-130
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/
%G en
%F UFA_2021_13_1_a10
B. Bayraktar; M. Emin Özdemir. Generalization of Hadamard-type trapezoid inequalities for fractional integral operators. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/

[1] S. S. Dragomir, C. E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000

[2] J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d'une fonction considéréepar Riemann”, J. Math. Ser. 4, IX (1893), 171–215

[3] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley Sons, New York, 1993 | MR | Zbl

[4] A. M. Nakhushev, Fractional calculus and its application, Fizmatlit, M., 2003 (in Russian)

[5] Autom. Remote Control, 74:4 (2013), 543–574 | DOI | MR | MR | Zbl

[6] P. O. Mohammed, F. K. Hamasalh, “New conformable fractional integral inequalities of Hermite–Hadamard type for convex functions”, Symmetry, 11:2 (2019), 263 | DOI | MR | Zbl

[7] J. E. Napoles Valdes, J. M. Rodriguez, J. M. Sigarreta, “New Hermite-Hadamard type inequalities involving non-conformable integral operators”, Symmetry, 11:9 (2019), 1108 | DOI

[8] D. S. Mitrinovic, J. Peĉariĉ, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993 | MR | Zbl

[9] M. Z. Sar{\i}kaya, E. Set, H. Yaldiz, N. Bashak, “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comp. Model., 57 (2013), 2403–2407 | DOI | MR | Zbl

[10] B. Bayraktar, “Some new inequalities of Hermite-Hadamard type for differentiable Godunova–Levin functions via fractional integrals”, Konuralp J. Math., 8:1 (2020), 91–96 | MR

[11] B. Bayraktar, “Some integral inequalities of Hermite-Hadamard type for differentiable $(s,m)$-convex functions via fractional integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 | MR

[12] B. Bayraktar, “Some new generalizations of Hadamard-type Midpoint inequalities involving fractional integrals”, Probl. Anal. Issues Anal., 9:27-3 (2020), 66–82 | DOI | MR | Zbl

[13] B. Bayraktar, “Some integral inequalities for functions whose absolute values of the third derivative is concave and $r$-convex”, Turkish J. Ineq., 4:2 (2020), 59–78

[14] M. A. Latif, S. S. Dragomir, “New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications”, Acta Univ. M. Belii, Ser. Math., 21 (2013), 27–42 | MR | Zbl

[15] M. E. Özdemir, A. Ekinci, A. O. Akdemir, “Some new integral inequalities for functions whose derivatives of absolute values are convex and concave”, TWMS J. Pure Appl. Math., 10:2 (2019), 212–224 | MR | Zbl

[16] A. Ekinci, M. E. Özdemir, “Some new integral inequalities via Riemann-Liouville integral operators”, Appl. Comput. Math., 18:3 (2019), 288–295 | MR | Zbl

[17] O. Almutairi, A. K{\i}lıçman, “Generalized integral inequalities for Hermite-Hadamard-type inequalities via $s$-convexity on fractal sets”, Mathematics, 7:11 (2019), 1065 | DOI

[18] M. Z. Sar{\i}kaya, N. Aktan, “On the generalization of some integral inequalities and their applications”, Math. Comput. Model., 54 (2011), 2175–2182 | DOI | MR | Zbl