Mots-clés : Hölder inequality
@article{UFA_2021_13_1_a10,
author = {B. Bayraktar and M. Emin \"Ozdemir},
title = {Generalization of {Hadamard-type} trapezoid inequalities for fractional integral operators},
journal = {Ufa mathematical journal},
pages = {119--130},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/}
}
TY - JOUR AU - B. Bayraktar AU - M. Emin Özdemir TI - Generalization of Hadamard-type trapezoid inequalities for fractional integral operators JO - Ufa mathematical journal PY - 2021 SP - 119 EP - 130 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/ LA - en ID - UFA_2021_13_1_a10 ER -
B. Bayraktar; M. Emin Özdemir. Generalization of Hadamard-type trapezoid inequalities for fractional integral operators. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a10/
[1] S. S. Dragomir, C. E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000
[2] J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d'une fonction considéréepar Riemann”, J. Math. Ser. 4, IX (1893), 171–215
[3] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley Sons, New York, 1993 | MR | Zbl
[4] A. M. Nakhushev, Fractional calculus and its application, Fizmatlit, M., 2003 (in Russian)
[5] Autom. Remote Control, 74:4 (2013), 543–574 | DOI | MR | MR | Zbl
[6] P. O. Mohammed, F. K. Hamasalh, “New conformable fractional integral inequalities of Hermite–Hadamard type for convex functions”, Symmetry, 11:2 (2019), 263 | DOI | MR | Zbl
[7] J. E. Napoles Valdes, J. M. Rodriguez, J. M. Sigarreta, “New Hermite-Hadamard type inequalities involving non-conformable integral operators”, Symmetry, 11:9 (2019), 1108 | DOI
[8] D. S. Mitrinovic, J. Peĉariĉ, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993 | MR | Zbl
[9] M. Z. Sar{\i}kaya, E. Set, H. Yaldiz, N. Bashak, “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comp. Model., 57 (2013), 2403–2407 | DOI | MR | Zbl
[10] B. Bayraktar, “Some new inequalities of Hermite-Hadamard type for differentiable Godunova–Levin functions via fractional integrals”, Konuralp J. Math., 8:1 (2020), 91–96 | MR
[11] B. Bayraktar, “Some integral inequalities of Hermite-Hadamard type for differentiable $(s,m)$-convex functions via fractional integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 | MR
[12] B. Bayraktar, “Some new generalizations of Hadamard-type Midpoint inequalities involving fractional integrals”, Probl. Anal. Issues Anal., 9:27-3 (2020), 66–82 | DOI | MR | Zbl
[13] B. Bayraktar, “Some integral inequalities for functions whose absolute values of the third derivative is concave and $r$-convex”, Turkish J. Ineq., 4:2 (2020), 59–78
[14] M. A. Latif, S. S. Dragomir, “New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications”, Acta Univ. M. Belii, Ser. Math., 21 (2013), 27–42 | MR | Zbl
[15] M. E. Özdemir, A. Ekinci, A. O. Akdemir, “Some new integral inequalities for functions whose derivatives of absolute values are convex and concave”, TWMS J. Pure Appl. Math., 10:2 (2019), 212–224 | MR | Zbl
[16] A. Ekinci, M. E. Özdemir, “Some new integral inequalities via Riemann-Liouville integral operators”, Appl. Comput. Math., 18:3 (2019), 288–295 | MR | Zbl
[17] O. Almutairi, A. K{\i}lıçman, “Generalized integral inequalities for Hermite-Hadamard-type inequalities via $s$-convexity on fractal sets”, Mathematics, 7:11 (2019), 1065 | DOI
[18] M. Z. Sar{\i}kaya, N. Aktan, “On the generalization of some integral inequalities and their applications”, Math. Comput. Model., 54 (2011), 2175–2182 | DOI | MR | Zbl