@article{UFA_2021_13_1_a1,
author = {S. N. Askhabov},
title = {Nonlinear convolution type integral equations in complex spaces},
journal = {Ufa mathematical journal},
pages = {17--30},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/}
}
S. N. Askhabov. Nonlinear convolution type integral equations in complex spaces. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/
[1] S.N. Askhabov, Nonlinear convolution type equations, Fizmatlit, M., 2009 (in Russian) | MR
[2] H. Brunner, Volterra integral equations: an introduction to the theory and applications, Cambr. Univ. Press, Cambridge, 2017 | MR
[3] V.E. Beneš, “A nonlinear integral equation from the theory of servo-mechanisms”, Bell. System. Techn. J., 40:5 (1961), 1309–1321 | DOI | MR
[4] V.E. Beneš, “A nonlinear integral equation in the Marcinkiewicz space $M_2$”, J. Math. Phys, 44:1 (1965), 24–35 | DOI | MR | Zbl
[5] O. Diekman., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl
[6] O. Diekman, H.G. Kaper, “On the bounded solutions of nonlinear convolutions equation”, Nonlinear Anal.: Theory, Meth. and Appl., 2:6 (1978), 721–737 | DOI | MR | Zbl
[7] F.D. Gakhov, Yu.I. Cherskii, Equations of convolution type, Nauka, M., 1978 (in Russian) | MR
[8] V.C.L. Hutson, J. S. Pym, Applications of functional analysis and operator theory, Academic Press, London, 1980 | MR | Zbl
[9] M.A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl
[10] M.M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, A Halsted Press Book, New York; John Wiley Sons, London, 1973 | MR | Zbl
[11] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | Zbl
[12] S.N. Askhabov, “Periodic solutions of convolution type equations with monotone nonlinearity”, Ufa Math. J., 8:1 (2016), 20–34 | DOI | MR | MR | Zbl
[13] R.E. Edwards, Fourier series. A modern introduction, v. 1, Springer-Verlag, New York, 1979 | MR | Zbl
[14] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (in Russian) | Zbl
[15] D. Porter, D. Stirling, Integral equations. A practical treatment, from spectral theory to applications, Cambr. Univ. Press, Cambridge, 1990 | MR | Zbl
[16] S.N. Askhabov, “Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces”, Journal of Math. Sciences, 250:5 (2020), 717–727 | DOI | MR | Zbl
[17] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970 | MR | Zbl
[18] Yu.A. Dubinskii, “Nonlinear elliptic and parabolic equations”, J. Soviet Math., 12:5 (1979), 475–554 | DOI
[19] H. Brezis, F.E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567–572 | DOI | MR | Zbl
[20] H. Brezis, F.E. Browder, “Nonlinear integral equations and systems of Hammerstein type”, Advances in Math., 18 (1975), 567–572 | DOI | MR
[21] S.N. Askhabov, N.K. Karapetyants, “Discrete equations of convolution type with monotone nonlinearity”, Differ. Equat., 25:10 (1989), 1255–1261 | MR | Zbl
[22] S.N. Askhabov, N.K. Karapetian, “Convolution Type Discrete Equations with Monotonous Nonlinearity in Complex Spaces”, J. Integral Equat. Math. Phys., 1:1 (1992), 44–66 | MR