Nonlinear convolution type integral equations in complex spaces
Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 17-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study various classes of nonlinear convolution type integral equations appearing in the theory of feedback systems, models of population genetics and others. By the method of monotone in the Browder-Minty operators we prove global theorems on existence, uniqueness and estimates for the solutions to the considered equations in complex Lebesgue spaces $L_p(\mathbf{R})$ under rather simple restrictions for the nonlinearities. Subject to the considered class of equations, we assume that either $p\in (1,2]$ or $p\in [2,\infty)$. The conditions imposed on nonlinearities are necessary and sufficient to ensure that the generated superposition operators act from the space $L_p(\mathbf{R})$, $1$, into the dual space $L_q(\mathbf{R})$, $q=p/(p-1)$, and are monotone. In the case of the space $L_2(\mathbf{R})$, we combine the method of monotone operator and contracting mappings principle to show that the solutions can be found by the successive approximation method of Picard type and provide estimates for the convergence rate. Our proofs employ essentially the criterion of the Bochner positivity of a linear convolution integral operator in the complex space $L_p(\mathbf{R})$ as $1$ and the coercitivity of the operator inverse to the Nemytskii operator. In the framework of the space $L_2(\mathbf{R})$, the obtained results cover, in particular, linear convolution integral operators.
Keywords: nonlinear integral equations, convolution operator, criterion of positivity, monotone operator, coercive operator.
@article{UFA_2021_13_1_a1,
     author = {S. N. Askhabov},
     title = {Nonlinear convolution type integral equations in complex spaces},
     journal = {Ufa mathematical journal},
     pages = {17--30},
     year = {2021},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear convolution type integral equations in complex spaces
JO  - Ufa mathematical journal
PY  - 2021
SP  - 17
EP  - 30
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/
LA  - en
ID  - UFA_2021_13_1_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear convolution type integral equations in complex spaces
%J Ufa mathematical journal
%D 2021
%P 17-30
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/
%G en
%F UFA_2021_13_1_a1
S. N. Askhabov. Nonlinear convolution type integral equations in complex spaces. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a1/

[1] S.N. Askhabov, Nonlinear convolution type equations, Fizmatlit, M., 2009 (in Russian) | MR

[2] H. Brunner, Volterra integral equations: an introduction to the theory and applications, Cambr. Univ. Press, Cambridge, 2017 | MR

[3] V.E. Beneš, “A nonlinear integral equation from the theory of servo-mechanisms”, Bell. System. Techn. J., 40:5 (1961), 1309–1321 | DOI | MR

[4] V.E. Beneš, “A nonlinear integral equation in the Marcinkiewicz space $M_2$”, J. Math. Phys, 44:1 (1965), 24–35 | DOI | MR | Zbl

[5] O. Diekman., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[6] O. Diekman, H.G. Kaper, “On the bounded solutions of nonlinear convolutions equation”, Nonlinear Anal.: Theory, Meth. and Appl., 2:6 (1978), 721–737 | DOI | MR | Zbl

[7] F.D. Gakhov, Yu.I. Cherskii, Equations of convolution type, Nauka, M., 1978 (in Russian) | MR

[8] V.C.L. Hutson, J. S. Pym, Applications of functional analysis and operator theory, Academic Press, London, 1980 | MR | Zbl

[9] M.A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl

[10] M.M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, A Halsted Press Book, New York; John Wiley Sons, London, 1973 | MR | Zbl

[11] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[12] S.N. Askhabov, “Periodic solutions of convolution type equations with monotone nonlinearity”, Ufa Math. J., 8:1 (2016), 20–34 | DOI | MR | MR | Zbl

[13] R.E. Edwards, Fourier series. A modern introduction, v. 1, Springer-Verlag, New York, 1979 | MR | Zbl

[14] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (in Russian) | Zbl

[15] D. Porter, D. Stirling, Integral equations. A practical treatment, from spectral theory to applications, Cambr. Univ. Press, Cambridge, 1990 | MR | Zbl

[16] S.N. Askhabov, “Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces”, Journal of Math. Sciences, 250:5 (2020), 717–727 | DOI | MR | Zbl

[17] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970 | MR | Zbl

[18] Yu.A. Dubinskii, “Nonlinear elliptic and parabolic equations”, J. Soviet Math., 12:5 (1979), 475–554 | DOI

[19] H. Brezis, F.E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567–572 | DOI | MR | Zbl

[20] H. Brezis, F.E. Browder, “Nonlinear integral equations and systems of Hammerstein type”, Advances in Math., 18 (1975), 567–572 | DOI | MR

[21] S.N. Askhabov, N.K. Karapetyants, “Discrete equations of convolution type with monotone nonlinearity”, Differ. Equat., 25:10 (1989), 1255–1261 | MR | Zbl

[22] S.N. Askhabov, N.K. Karapetian, “Convolution Type Discrete Equations with Monotonous Nonlinearity in Complex Spaces”, J. Integral Equat. Math. Phys., 1:1 (1992), 44–66 | MR