@article{UFA_2021_13_1_a0,
author = {G. G. Amosov and E. L. Baitenov},
title = {On rank one perturbations of semigroup of shifts on half-axis},
journal = {Ufa mathematical journal},
pages = {3--16},
year = {2021},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a0/}
}
G. G. Amosov; E. L. Baitenov. On rank one perturbations of semigroup of shifts on half-axis. Ufa mathematical journal, Tome 13 (2021) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2021_13_1_a0/
[1] G.G. Amosov, “On perturbations of dynamical semigroups defined by covariant completely positive measures on the semi-axis”, Anal. Math. Phys., 11:1 (2021), 27 | DOI | MR | Zbl
[2] G.G. Amosov, E.L. Baitenov, “On perturbations of the semigroup of shifts on the half-axis changing the domain of its generator”, Lobachevskii J. Math., 41:12 (2020), 2303–2309 | DOI | MR | Zbl
[3] W. Arveson, “The domain algebra of a CP-semigroup”, Pacific. J. Math., 203:1 (2002), 67–77 | DOI | MR | Zbl
[4] A.D. Baranov, D.V. Yakubovich, “One-dimensional perturbations of unbounded self-adjoint operators with empty spectrum”, J. Math. Anal. Appl., 424:2 (2015), 1404–1424 | DOI | MR | Zbl
[5] K.J. Engel, R. Naigel, Semigroups for linear evolution equations, Graduate texts in mathematics, 194, Springer, 1995 | MR
[6] A.S. Holevo, “Excessive maps, “arrival times” and perturbation of dynamical semigroups”, Izv. Math., 59:6 (1995), 1311–1325 | DOI | MR | Zbl
[7] T. Kato, Perturbation Theory for Linear Operators, Springer, 1995 | MR | Zbl
[8] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, Akademia Kiado/North-Holland Publishing Company, 1970 | MR | Zbl