Mots-clés : Liouville theorem.
@article{UFA_2020_12_4_a9,
author = {B. N. Khabibullin},
title = {Liouville-type theorems for functions of finite order},
journal = {Ufa mathematical journal},
pages = {114--118},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a9/}
}
B. N. Khabibullin. Liouville-type theorems for functions of finite order. Ufa mathematical journal, Tome 12 (2020) no. 4, pp. 114-118. http://geodesic.mathdoc.fr/item/UFA_2020_12_4_a9/
[1] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[2] W.K. Hayman, P.B. Kennedy, Subharmonic functions, Academic Press, London, 1976 | MR | MR | Zbl
[3] A. Baranov, Yu. Belov, A. Borichev, “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552 | DOI | MR | Zbl
[4] A. Baranov, Y. Belov, A. Borichev, Summability properties of Gabor expansions, Dec. 5, 2018, arXiv: 1706.05685 | MR
[5] A. Aleman, A. Baranov, Y. Belov, H. Hedenmalm, Backward shift and nearly invariant subspaces of Fock-type spaces, July 12, 2020, arXiv: 2007.06107
[6] B.N. Khabibullin, A.V. Shmeleva, “Balayage of measures and subharmonic functions to a system of rays. I: The classical case”, St. Petersbg. Math. J., 31:1 (2020), 117–156 | DOI | MR | Zbl